

Chapter 1: Introduction

This chapter introduces the reader to tensor representations and their operations from the
mathematical representation to the Python data structures. Starting from vectors, the
presentation progresses to matrices and tensors. The focus is on studying vectors and
matrices using Linear Algebra concepts that get generalised to Tensors that will be introduced
in chapter three. Several references provide examples and applications of these concepts in
their entirety. The primary operations that will be discussed in subsequent chapters are
explained with some preliminary examples and applications. Every chance to visualise these
concepts vividly is presented.

1.1 History

Structured data is used in computer algorithms in many different ways. The primary data
structures for most algorithms are scalars, linear arrays, matrices, and multi-dimensional
arrays. Multi-dimensional arrays are not tensor structures but share some of their properties.
Tensors can be defined as functions of any point in space coordinates, which transform
linearly between coordinate systems. The three-dimensional space has 3r components,
where r is the rank. The tensors of rank zero are scalars, the tensors of rank one are vectors,
and the tensors of rank two are matrices.
Since tensors transform linearly between coordinates, they are commonly used in differential
non-Ecludiean geometry to study curves and surfaces in three-dimensional space by using
calculus techniques applicable in higher-dimensional spaces (Pressley, 2010; Fortney, 2018).
A tensor may refer to different objects in different domains, for instance, a stress tensor,
moment of inertia tensor, field tensor, metric tensor, and tensor product, which are defined
in physics and are not what we aim to explain in this book. Tensors are rarely defined carefully,
and the definition usually has to do with transformation properties and domain-specific
definitions, making it difficult to visualise what these objects are. We focus on tensor
definitions related to data mining and machine learning, including deep learning. Data
conversion into information is aided by differential and integral calculus. Differential calculus
is used for studying the rates of change, while integral calculus is used to study the definitions,
properties, and applications of these two related concepts. In chapter three, we will explain
more.
Motivation: What are the benefits of studying tensors in computer science disciplines? To
answer this question, we need to discuss how tensor applications are implemented and how
many algorithms have been developed to process data in tensor spaces. This book attempts

CHAPTER 1

2

to answer this question with various applications' essential mathematical backgrounds,
algorithms, and code examples. A motivational example problem appears in section 1.5. In
each chapter, more applications are discussed, with chapter six devoted entirely to
applications.
Absolute differential calculus is the earliest foundation of tensor theory. It was developed by
Gregorio Ricci-Curbastro in 1887–96 and subsequently popularised in a paper (Ricci and Levi-
Civita, 1900) written with his student Tullio Levi-Civita. The general relativity theory described
the geometry of gravitation in space-time curvature with respect to the energy and
momentum of the matter and radiation in a system of partial differential equations. The
following is a detailed timeline for developing tensor computing techniques. More theoretical
concepts are mentioned in the timeline that this book will not cover but are referenced for
the readers interested in a deeper dive.
1846: “Tensor” was first introduced by William Ron Hamilton and later became known to
scientists through the publication of Levi-Civita's book “The Absolute Differential Calculus”.
1853: Matrix, Matrix Theory, and the principles of Universal Algebra are developed by Joseph
Sylvester and Arthur Cayley.
1874: Set theory is developed by George Cantor; it represents collections of abstract objects,
including notions like Venn diagrams and set memberships.
1908: Axiomatic Set Theory is developed by Ernst Zermelo, reformulating the now "naive set
theory" in first-order logic to resolve its paradoxes, for example, Russell’s paradox, the Burali-
Forti paradox, and Cantor’s paradox. This theory does not allow the construction of ordinal
numbers, while most ordinary mathematics can be developed without using ordinals. The
latter is an essential tool in most set-theoretic investigations.
1922: Abraham Fraenkel and Thoralf Skolem propose operationalising a definite property as
one is formulated in first-order logic, with all atomic formulae involving set membership or
identity. This adds the axioms of replacement and regularity, yielding the theory of ZF. Then
adding the axiom of choice becomes the ZFC theory. This cannot be axiomatised by a finite
set of axioms because of the replacement axiom.
1925: Werner Heisenberg, Max Born, and Pascual Jordan formulate matrix mechanics, a
formulation of quantum mechanics.
1922-1940: Von Neumann-Bernays-Godel (NBG) set theory can be finitely axiomatised. The
ontology of NBG includes classes as well as sets; a set is a class that is a member of another
class. NBG and ZFC are equivalent set theories such that any theorem about sets is provable
in NBG if and only if it is in ZFC.
1942-1945: Samuel Eilenberg and Saunders Mac Lane first introduced the category theory in
connection with the algebraic topology. It has several aspects, such as “general abstract
nonsense”. The latter refers to the high abstraction level compared to more classical branches
of mathematics. Homological algebra is a category theory in organising and suggesting
calculations in abstract algebra. Diagram chasing is a visual method of arguing with abstract
"arrows". The topos theory is a form of abstract sheaf theory with geometric origins; it leads
to ideas such as the pointless topology.
1964: Iverson uses the Array Programming Language (APL) APL notation to describe IBM’s
system 360. (FALKOFF, AD, Iverson, KE, Sussenguth, EH, 1964)

CHAPTER 1

3

1957 to 1965: APL is the first homogenous simple array programming language designed by
Kenneth E. Iverson. The language works on entire arrays simultaneously, like the SIMD
architecture's vector instruction set. It yields smaller and more concise programs though no
iteration is involved.
1973: Based on APL, Trenched More proposes an array theory that offers a robust set of
operators and operations on nested, heterogeneous rectangular arrays (MORE, T, 1973).
1979: Programming Language/Systems PL/S II or AT/370 languages is developed to
implement More’s array theory operations, using an APL interface. NIAL2 (Nested Interactive
Array Language) is developed as a programming language based on array theory and its
applications to make it easy to rapidly develop loop-free data-driven algorithms (JENKINS,
MA, Franksen, OI, 1992). APL2 was another implementation of More’s nested Array theory.
For a while, it was IBM’s strategic language for HPC.
1988: Mathematics of Arrays and the Ψ-Calculus were first introduced in the PhD thesis of Dr
Lenore Mullin in Computer and Information Science at Syracuse University, Syracuse, NY. The
thesis introduces an algebraic formulation representing all data structures invariant of
dimensionality and shape. An MoA structure describes scalars as rank 0, linear arrays (vectors)
as rank one, 2-D arrays (matrices) as rank two, and similar higher rank structures. The
representation is stored in memory in a linear structure with elements stored in a row or
column-major order in a linear array, a dimensionality scalar, and a shape vector. A list of
constructs is provided. The Ψ- Calculus is a way to combine expressions in the MoA algebra
by composing indices; it uses the Ψ-Function as its foundation. Mullin’s dissertation put
closure on work started by Phil Abrams (“An APL Machine”, Stanford ’72, Harold Stone
advisor), who believed there was formalism for array reasoning based on shapes and indexing.
His work was augmented by Hassett and Lyon, Guibas and Wyatt, Perlis, Miller, Minter, Tu,
Gerhart, Berkling, and Budd, to name a few.
1990: A Comparison of Array Theory with Mathematics of Arrays is presented by L. Mullin and
M. Jenkins. (JENKINS, MA, Mullin, LR, 1991).
1993: L. Mullin and G. Hains show how to use the Bird-Meertens Formalism to define MoA.
(HAINS, G, Mullin, LR, 1993).
2000: MoA library was built as a dynamic link library (dll); it is then used in basic image and
video processing applications in an MSc. thesis (Helal, 2001).
2001: Faster Fast Fourier Transform (FFT) and generalised Radix n FFT using MoA are
presented by L. Mullin and S. Small (MULLIN, LR, Small, S, 2002).
2004: “Multi-Way Analysis with Applications in the Chemical Sciences” book detailed how
multi-way PCA and Multi-way Factor analysis and other methods are applied to various
computational chemistry problems. (Smilde, Bro and Geladi, 2004)
2005: L. Mullin used MoA and the Ψ-Calculus to map Digital Signal Processing (DSP) algorithms
to multiple processor/memory hierarchies. “A Uniform way of reasoning about array-based
computation in radar: Algebraically connecting the hardware/software boundary” presented
by Mullin (MULLIN, LR, 2005). Mullin and Raynolds applied the Conformal Computing
Techniques by using MoA and Ψ-Calculus to solve problems in Computational Physics
(MULLIN, LR, Raynolds, J, 2005).

CHAPTER 1

4

2009: A comprehensive survey of multi-way analysis and their applications was presented
(Kolda and Bader, 2009).
2009: The NSF held a workshop to decide future trends in tensor computation. In this
workshop, researchers from mathematics, physics and computing presented state-of-the-art
in the field.
2010: A PhD thesis applied the MoA methods in the high-dimensional scientific computation
problem “Multiple Sequence Alignment in Bioinformatics” in the MSA dynamic programming
algorithm to score a tensor of alignments. Partitioning is processed in parallel providing
automatic load balancing (Helal, 2009).
2014: “Multilinear subspace Learning” detailed the advances from linear subspace learning
applying dimensionality reduction algorithms based on linear algebra and how it scales to
multilinear subspace learning through tensor projections and decompositions (Lu, Plataniotis
and Venetsanopoulos, 2014).
2006 - onwards: various neural networks and data mining applications applied tensor
decomposition proving advances in accuracy and efficient computation, using less memory
and time. This led to being coined “Compressive Neural Networks” due to the performance
benefits of employing tensor decomposition techniques.

1.2 Linear Algebra

Linear algebra can be better reviewed or studied for the first time with complete books such
as (Chahal, 2018), (Carter, 1995) and (Dym, 2007). The Online Edx platform course Linear
Algebra for Frontiers by The University of Texas at Austin is a valuable resource for learning
efficient computation of linear algebra concepts (Geijn and Quintana-Ort´, 2008). The AI
algorithms’ mathematical foundations and their Python packages are covered in (Farrell,
2020). The intuition that this book is trying to build is to vividly understand the notion of
projections from lower to higher spaces or from higher to lower spaces using linear algebra
tools, then expanding to other types of Algebra in later chapters. Vector and matrix
operations, including linear transformations and independence, must be understood to
understand higher-order tensor operations and properties. Vector addition, subtraction,
normalisation, dot product, cross product, outer product, and derivatives (rate of change) are
the basic operations on vectors required for machine learning. The next section will focus on
the main matrix operations and properties that will be necessary for the following chapters.
The accompanying python notebook ch1.ipynb has a helpful review of the operations
discussed in these two sections with some preliminary operations and visualisations.

Motivation: Machine learning (ML) algorithms aim to explain the dynamics of a given dataset
of any sample. A training dataset is often represented as a matrix, with rows as m entities and
columns as n features. Each entity is a row vector of all features describing the entity. Each
feature is a column vector, representing the domain and distribution of values that any entity
can take. When data is linear, it is easy to describe it with a linear equation in the form y=f(x)
=w.x + b that satisfies all rows equations (samples in the dataset). This is also described as

CHAPTER 1

5

inferring a relationship between (x,y) pairs that reflect a hypothesis to which an accuracy
measure is required from a testing dataset. The weights/ coefficients/parameters w measures
the correlation and is estimated by the ML algorithm, which is the slope in a line equation or
gradients in higher dimensions. The independent features/predictors x is read from the
dataset along with the dependent/outcome/target value y. b is the y-intercept in the line
equation and is the bias in higher dimensions, and is usually represented as an extra weight
element in the weights vector rather than a variable of its own. Solving a set of equations, as
shown below, is a deterministic approach to identifying the parameters or the weights (the
unknowns) with the given values in the dataset (the knowns or observations) has many
algorithms. This approach will not converge in a reasonable time, even for a small dataset.
Deterministic approaches would create a lookup table for predicting a y for a test x, as defined
from the training dataset. This is not the aim of machine learning, in which a dataset is just
samples, and the algorithm needs to generalise to unseen test sets. Failing to generalise to
unseen data is called overfitting. In classification models, y is the dependent discrete
variable/feature in the prelabelled dataset extracted from the x vector. In binary
classification, y can be the set {1, -1}, or more codes for more classes. In regression models, y
∈ ℝ is the predicted continuous value. The last section in this chapter will explain both models
in more detail.
This equation maps 𝑥 ∈ ℝ௡ to 𝑦 ∈ ℝ and is called functionals 𝐹: ℝ௡ → ℝ, which will be
further explained in chapter three. For now, these different spaces of y and x are vector
spaces, domains and the range of the function that maps between them. These linear
mapping functions have the linearity property:
f(w1x1 + w2x2) = w1f(x1) + w2f(x2), (in the higher dimension f(WX) = ∑ 𝑤௜𝑥௜

௡
௜ୀଵ , which is

equivalent to:

1. f(x1 + x2) = f(x1) + f(x2) : Addition
2. f(wx) = wf(x) : Scaling

Intuition: Linear equations draw a line for one-dimensional space when x is a scalar value, a
plane for 2-dimensional space when x is a vector of 2 values, and a hyper-plane for higher
dimensions. An animation can be found in https://youtu.be/slBI5YuVUTM to visualise
regression in the higher-dimensional space.

1.2.1 Vector Operations:

Let us define vectors and their calculus. A vector 𝑣 ∈ ℝே is not just a one-dimensional array
of N scalars; it is a trajectory with the given magnitude (elements values) along N coordinates

CHAPTER 1

6

corresponding to each element. It represents displacement and velocities compared to scalar
values such as temperature and mass.

Figure 1: Geometric interpretations of vector addition, subtraction, and dot products. Angle θ is
meant to represent the angle between vectors a and b, but it is positioned visually as if it was
between vectors (a+b) and b. A green arc highlights this angle.

1.2.1.1 Vector Addition, Subtraction and Normalisation, and
Transposition

Vector operations have geometric interpretations. The addition of two vectors measures the
length of the longer diagonal of the parallelogram formed by these two vectors, as shown in
Figure 1.

The p-norm of a vector is a positive-definite scalar function defined as ‖𝑣‖௣ =

൫∑ |𝑣௜|௣ே
௜ୀଵ ൯

భ

೛ ≥ 0, ∀𝑝 ≥ 1, where |𝑣௜| is the absolute value of each element 𝑣௜ .
This means that 1-norm is the sum of the absolute values of the elements. The 2-norm is the
magnitude of the vector v ∈ ℝே, which is its length (Frobenius norm) and is denoted ‖𝑣‖ଶ or
‖𝑣‖ி. It is the Euclidean distance from the origin to the point reached by the vector and

calculated as follows = ට∑ 𝑣௜
ଶே

௜ୀଵ . The infinity-norm is defined as the case where 𝑝 → ∞, as

‖𝑣‖ஶ = lim
௣→ஶ

൫∑ |𝑣௜|௣ே
௜ୀଵ ൯

భ

೛ = max (|𝑣௜|). For example, given v = ൥
10
2

−6
൩, then ‖𝑣‖ଵ = 18,

‖𝑣‖ଶ = 11.83, ‖𝑣‖ஶ = 10.

A vector is normalised such that adding all its elements equals one. Dividing all its elements
by the vector’s length normalises the vector, such that normalised 𝑣 =

௩

‖௩‖
. The transposition

of a vector does not change the order of its elements but changes its representation as a row
or column vector.

-50%

0%

50%

0

100

200

20
01

20
03

20
05

20
07

20
09

20
11

Re
ve

nu
e

Co
ns

um
er

Co

nf
id

en
ce

Consumer Confidence

Revenue

CHAPTER 1

7

1.2.1.2 Vector Dot (Inner) Product

Vectors are generally represented as column vectors. A dot product between vectors v and u
∈ ℝ୒ is denoted 〈v, u〉 or v୘t and measures the similarity between similar dimensions. For
Example, given:

v = ൥
10
2

−6
൩ , u = ൥

−3
0

−2
൩, then v୘u = [10 2 −6]. ൥

−3
0

−2
൩ = (10 × −3) + (20) + (−6 ×

−2) = −18.
The general rule of the dot product is, for any two given vectors v and u ∈ ℝ୬: ∑ v୧u୧

୒
୧ୀଵ .

Another formula for the cross product is 〈v, u〉 = ‖u‖‖v‖ cos θ, where θ is the angle between
vectors v and u. The result of a dot product is a scalar that denotes the projection of one
vector over the other. It gives a measure of similarity between two vectors. When θ is 90°
between any given two vectors, i.e. they are perpendicular to each other, their dot product
will be 0. This means that these vectors are orthogonal.

1.2.1.3 Vector Cross Product

The cross product is denoted × and it measures the similarity between the different
dimensions. It is performed as follows for the same v and u ∈ ℝଷ given above: (2 (-2) – -6(0),
-6(-3) – 10(-2), 10(0) – -2(-3)) = (-4, 38, 6).

The general rule for the cross-product in ℝଷ is: (𝑣ଵ, 𝑣ଶ, 𝑣ଷ) × (𝑢ଵ, 𝑢ଶ, 𝑢ଷ) = (𝑣ଶ𝑢ଷ −
𝑣ଷ𝑢ଶ, 𝑣ଷ𝑢ଵ − 𝑣ଵ𝑢ଷ, 𝑣ଵ𝑢ଶ − 𝑣ଶ𝑢ଵ). The output is a third vector in ℝଷ that is perpendicular to
both input vectors. The length of the output vector is equal to the area of the parallelogram
formed by the input vectors. The general rule in ℝ௡, it is 𝑣 × 𝑢 = ‖𝑢‖‖𝑣‖ sin 𝜃 𝑛, where 𝜃
is the angle between vectors v and u, and n is the unit vector perpendicular to the plane
containing vectors v and u and given by the right-hand rule.

1.2.1.4 Vector Outer and Hadamard Products

The Hadamard product ⊙ measures the interactions between elements in the same order
and position between two vectors and is defined as follows:

𝑣 ⊙ 𝑢 = [𝑣ଵ𝑢ଵ … 𝑣௡𝑢௡] = [10 × −3 2 × 0 −6 × −2] = [−30 0 12]
The outer product (also called the dyadic/external) product) is denoted ⊗ and is performed
as follows for the same v ∈ ℝ௡and u ∈ ℝ௠ produces a Matrix 𝑀 ∈ ℝ௡×୫. For example, given
v and u above:

𝑣 ⊗ 𝑢 = ൥

𝑣ଵ𝑢ଵ … 𝑣ଵ𝑢௡

⋮ ⋱ ⋮
𝑣௡𝑢ଵ … 𝑣௡𝑢௡

൩ = ൥
10 × −3 10 × 0 10 × −2
2 × −3 2 × 0 2 × −2

−6 × −3 −6 × 0 −6 × −2
൩ = ൥

−30 0 −20
−6 0 −4
18 0 12

൩

∈ ℝଷ×ଷ

CHAPTER 1

8

The general rule for the outer product for ℝ௡ is shown above with the ℝଷ example. The
output is a matrix, called a dyad, with rows and columns equal to the number of elements in
the input vectors, which is generalised to tensor of order two and rank one as will be explained
below. The outer product is generalised as the tensor product. The multiplications of every
element in the first vector with every element in the second vector measure the interaction
between all elements in the first vector with all elements in the second vector. The Dirac
notation or bra-kit notation use this dyadic algebra in quantum mechanics, such that a ket
denoted |𝑣⟩ is a vector in an abstract (complex) vector space V (will be explained below), and
a bra denoted ⟨𝑓| is a linear mapping 𝑓: 𝑉 → ℂ, to each vector v in V to complex plane ℂ.

1.2.1.5 Vector Calculus: Derivatives and Gradients

Calculus measures the rate of change of a function, such as the rate of change of x as a ratio
to the rate of change of y in a linear equation. This measures the slope of the line tangent to
the curve at the point 𝑥଴. Differentiation measures the rate of change as the delta change
goes to zero is:

𝑓ᇱ(𝑥) = lim
௛→଴

௙(௫బା௛)ି௙(௫బ)

௙

𝑓ᇱ(𝑥)is called the first derivative of function 𝑓(𝑥). If the derivative can be formed at each
point of a subdomain of the domain of 𝑓, then 𝑓is said to be differentiable on that subdomain.
𝑑𝑦=𝑓ᇱ(𝑥) 𝑑𝑥 is called the differential of 𝑦 or 𝑓(𝑥). Therefore, 𝑓ᇱ(𝑥) =

ௗ௬

ௗ௫
. Many calculus

books such as (Banner, 2007) and online cheat sheets and calculators can give the rules of
differentiation for different functions, and various exercises on the chain rule are applied
when many functions are composed together.

The second (order) derivative 𝑓ᇱᇱ(𝑥) of a function is the derivative of the derivative of the
function. On the graph of a function, the second derivative corresponds to the curvature of
the graph.
For functions of two or more variables, the partial derivative is the derivate with respect to
one of those variables, keeping all other variables constant. For example 𝑓(𝑥, 𝑦) = 3𝑥ଶ𝑦ଷ,
we can differentiate with respect to x, ௗ௙

ௗ௫
(𝑥, 𝑦) = 6𝑥𝑦ଷ or with respect to y, ௗ௙

ௗ௬
(𝑥, 𝑦) =

9𝑥ଶ𝑦ଶ.
The gradient of a function, for example, 𝑓(𝑥,𝑦,𝑧), is a vector function of all first partial
derivatives of all its variables. ∇𝑓 = [

ఋ௙

ఋ௫
(𝑥, 𝑦, 𝑧),

ఋ௙

ఋ௬
(𝑥, 𝑦, 𝑧),

ఋ௙

ఋ௭
(𝑥, 𝑦, 𝑧)]. More on this will be

explained in chapter three.

CHAPTER 1

9

1.2.1.6 Vector Field, Spaces and Independence

A field is a set 𝔽 with at least two elements, 0 and 1 and two functions: addition and
multiplication. We can define 𝔽: 𝔽௡ → 𝔽௠{0, 1, 𝑥, 𝑣|𝑥 + 𝑦 ∈ 𝔽 𝑎𝑛𝑑 𝑥𝑦 ∈ 𝔽}. For example,
the field ℚ of rationals, that is, fractions of the form ௠

௡
, where m, n are integers and n > 0, the

field ℝ of real numbers, and the field ℂ = {x + iy | x, y ∈ ℝ } of complex numbers. Vector was
defined earlier as a magnitude and direction. This makes adding any two vectors or scaling
any of them, or both by a factor create new vectors that are linearly dependent on the input
vectors and belong to the same vector space defined over a field 𝔽 = ℝ, ℚ, ℂ, …, and so forth,
or in the span of the input vectors. For a complete definition of vector space properties, spans
and linear dependence and independence, please review complete books like (Carter, 1995)
and (Deisenroth, Faisal and Ong, 2019). You can also follow the link to “the Jupyter Guide to
Linear Algebra” from the ch1.ipynb notebook. We will summarise this critical concept as
vector space is a subset, S, of ℝ௡ with the following properties:

• 0 ∈ S (the zero vector of size n is in the set S); and
• If v;w ∈ S then (v+w) ∈ S; and addition
• If 𝛼 ∈ ℝ and 𝑣 ∈ S, then 𝛼𝑣 ∈ S. scalar multiplication

Any linear combinations can be defined on the unit base vectors describing the vector span
of all members of the vector space. The Vector span is the set containing all linearly
dependent vectors on a given vector.
The vector span is explained as:

ቄ𝛼ଵ ቀ
1
0

ቁ + 𝛼ଶ ቀ
0
1

ቁ | 𝛼ଵ, 𝛼ଶ 𝜖 ℝቅ

is the set of all linear combinations of the unit basis vectors e1;e2 ∈ ℝ2. The basis vectors have
two fundamental properties: completeness, such that every vector can be written as a linear
combination of basis vectors, and uniqueness, such that the coefficients in the expansion of
vectors are unique. For example, all vectors in ℝn (an uncountable infinite set) can be

described with just these n basis vectors. For example, given 𝑣 = ൥
10
2

−6
൩ in ℝ3, it is expressed

as:

𝑣 = 10 ൥
1
0
0

൩ + 2 ൥
0
1
0

൩ − 6 ൥
0
0
1

൩

This is generalised to ℝ௡ by: x1e1 + x2e2 + … + xnen. Let {v1,v2, …,vn} ∈ ℝ௡. ei ∈ ℝn is defined as
the unit basis for dimension i=1, 2, … n such that only the ith position is equal to 1, and all

other values = 0, for 1≤ i ≤ n, 𝑒௜ =

⎣
⎢
⎢
⎢
⎡
0
⋮
1
⋮
0⎦

⎥
⎥
⎥
⎤

. Then the span of these vectors,({v1,v2, …,vn}), is said to

be the set of all vectors that are formed by a linear combination of the given set of vectors.

CHAPTER 1

10

Given two vectors, v above, and u = ൥
20
4

−12
൩, both are said to be linearly dependent as u = 2v,

under scalar multiplication, such that the scalar is 2.
Let {v1,v2, …,vn} ∈ ℝ௡. Then this set of vectors is said to be linearly independent if 𝑥ଵ𝑣ଵ +
⋯ + 𝑥௡𝑣௡ = 0. This implies that 𝑥ଵ = ⋯ = 𝑥௡ = 0. A set of linearly dependent vectors is
defined as such when at least one of the vectors can be expressed as a linear combination of
another.

Example of a vector space that satisfies a plane of vectors = ൥
0
𝑥ଵ

𝑥ଶ

൩, is it a subspace of ℝଷ? we

need to test the three conditions. 1) the zero vector is included in the set since variables
𝑥ଵ and 𝑥ଶare meant to accept any values, including zero. 2) if u and v and two vectors are in

this set, will u+v be in the set? Yes because ൥
0 + 0

𝑢ଵ + 𝑣ଵ

𝑢ଶ + 𝑣ଶ

൩, and all elements satisfy the set

definition. 3) if 𝛼 ∈ ℝ and v are in the set, will 𝛼𝑣 be in the set? Yes because ൥
𝛼0 = 0

𝛼𝑣ଵ

𝛼𝑣ଶ

൩, and

all elements satisfy the set definition. Then this set is a subspace of ℝଷ.

Another example of a vector space that satisfies a plane of vectors = ൥
1
𝑥ଵ

𝑥ଶ

൩, will not be a

subspace of ℝଷ the zero vector is not in the set.

Intuition: Dot products are functionals that reduce the dimensionality of any two vectors to
1 scalar, measuring similarity between them. Cross products keep the dimensionality as is
measuring the area of the parallelogram formed by the two vectors. Outer products increase
the dimensionality by 1 to show the correspondence of each element of the first vector by
each element of the second vector. Independent vectors are vectors that can not be linearly
composed of each other. Being perpendicular to each other indicates that the two vectors are
uncorrelated and independent. The first derivative of one dimension variable is the slope of
the line formed by the vector equation. At the same time, the first derivative of the
multivariate vector is comprised of a partial derivative of each variable, forming the gradient
vector. Second derivatives are defined to check for minimum or maximum, or saddle points
of the first derivatives.

1.2.2: Matrix Operations

As introduced in the motivation section earlier, matrices are linear mapping between the rows
and the columns. In data science, this would be a map between the entities and their features.
A matrix M ∈ ℝ௠×௡ is composed of m rows forming the entities as m vectors v, each
containing N elements vi ∈ ℝ௡ for 1 ≤ 𝑖 ≤ 𝑁. The n elements or features describe the rows
and form the columns. Vectors are special kinds of matrices that contain one row or one

CHAPTER 1

11

column, such that either the m or n is equal to one, and the other is the number of elements
it contains. Element-wise operations, such as addition and subtraction, require matrices if
equal dimensions. Scalar multiplication and division require a matrix and a scalar. The
transposition of a matrix turns its rows into columns and vice versa. For a given matrix 𝑀 ∈
 ℝ௠×௡ , the transpose is defined as: 𝑀் ∈ ℝ௡×௠ . We will explain the matrix multiplication,
orthonormal matrices, determinants, inverse matrices, and Hessian and Jacobian Matrices.

1.2.2.1: Matrix Multiplication

As the motivation section illustrates, linear algebra studies linear maps or function dynamics.
For example, if given three breakfast recipes (R), Pancakes (P), Biscuits (B), and Waffles (W)
that feed 3 people. Pancake ingredients are 2 cups of baking mix (BM), 2 eggs (E), and 1 cup
of Milk (M). Biscuits' ingredients are 2.25 cups of baking mix and 0.75 cups of milk. Waffles
ingredients are 2 cups of baking mix, 1 egg, 1.3 cups of milk, and 2 tablespoons of oil (O). We
can represent this data using the three vectors: [2, 2, 1, 0], [2.25, 0, 0.75, 0] and [2, 1, 1.3, 2].
To unify the representation, we form a matrix 𝑀 ∈ ℝଷ×ସ in which the three recipes are the
entity of the rows, the ingredient quantities needed per recipe are in the columns, and each
has its weight metric defined in the dataset metadata. This will produce the following dataset
matrix (labels in the bold first row are usually omitted):

𝑀 = ൦

𝑩𝑴 𝑬 𝑴 𝑶
2 2 1 0

2.25 0 0.75 0
2 1 1.3 2

൪ ቐ

𝑹
𝑃
𝐵
𝑊

Element aij denotes the value in the ith row and jth column starting indexing from 0 for both
rows and columns. For example, a1,1 in M = 0, which is the number of eggs required for making
1 serve of Biscuits. Matrix addition can be defined as having more data about the same
entities in the same order of features, and it is safe to do element-wise addition. For example,
to double the ingredients to feed six people, M+M, which is also equal to 2M, calculates the
ingredients:

2𝑀 = ൥
4 4 2 0

4.5 0 1.5 0
4 2 2.6 4

൩

If we want to feed 1 person a pancake, 12 people biscuits, and 9 people waffles, we need to
make one batch of pancakes, 4 batches of biscuits, and 3 batches of waffles. To find out the
total ingredients needed for this, we can use a vector v = [1, 4, 3] and multiply it by M to
produce:

𝑣 × 𝑀 = [1, 4, 3] × ൥
2 2 1 0

2.25 0 0.75 0
2 1 1.3 2

൩

= [1 × 2 + 4 × 2.25 + 3 × 2 1 × 2 + 4 × 0 + 3 × 1 1 × 1 + 4 × 0.75 + 3 × 1.3 1 × 0 + 4 ×
= [17, 5, 8,6]
We need 17 cups of baking mix, 5 eggs, 8 cups of milk, and 6 tablespoons of oil.

CHAPTER 1

12

This is a matrix multiplication between a vector v, which is a special matrix ∈ ℝଵ×ଷ and a
matrix M ∈ ℝଷ×ସ. We did a dot product (inner product) between each row of the first matrix
(here was only one) and each column of the second matrix. Matrix multiplication requires that
the number of elements of the rows in the first matrix matches the number of elements of
the columns in the second matrix. This means the dimension of the columns of the first matrix
should be equal to the dimension of the rows of the second matrix. For example, the matrix
multiplication 𝑀ଵ ∈ ℝଵ×ଷ × 𝑀ଶ ∈ ℝଷ×ସ = 𝑀௢௨௧ ∈ ℝଵ×ସ. The inner dimensions of the input
matrices should match to produce an output matrix with the outer dimension of both
matrices. Using the labels and the meaning of the multiplication, as illustrated in Figure 2, we
can see that matrix multiplication combines information from two matrices to calculate the
contribution of the rows entities of the first matrix to the features columns of the second
matrix.

Figure 2: Matrix Multiplication Label Matching and meaning

Another linear mapping example is when given two gas producers (A and B) that send
different proportions of the gas they produce to three suppliers (1, 2 and 3), with proportions
defined in matrix P ∈ ℝଶ×ଷ. Each supplier then forwards gas in different proportions to four
gas stations (X, Y, Z and W) as defined in matrix S ∈ ℝଷ×ସ. To find out the proportion of each
producer output that goes to each gas station, matrix multiplication computes this as follows:

𝑃 × 𝑆 = ቂ
0.5 0.2 0.3
0.0 0.4 0.6

ቃ × ൥
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

൩ = ቂ
0.20 0.59 0.06 0.15
0.00 0.58 0.12 0.30

ቃ ∈ ℝଶ×ସ

The general rule of matrix multiplication is:
𝐶 = 𝐴 × 𝐵 such that Matrix C contains elements c indexed by i and j 𝑐௜௝ = ∑ 𝑎௜௞

௡
௞ୀଵ 𝑏௞௝. For

example, the above 𝑣 ∈ ℝଵ×ଷ multiplied by M ∈ ℝଷ×ସ 𝑐ଵଶ = 𝑎ଵଵ𝑏ଵଶ + 𝑎ଵଶ𝑏ଶଶ + +𝑎ଵଷ𝑏ଷଶ =
1 × 2 + 4 × 2.25 + 3 × 2 = 5, then repeat for all 𝑐௜௝ 1 ≤ 𝑖 ≤ 1 and 1 ≤ 𝑗 ≤ 4.
Lie Product is a square matrix produced by the difference of the simple product order of two
square matrices of the same order ((𝐴, 𝐵) ∈ 𝔽௡×௡), using the following rule:

[[𝐴, 𝐵]]௜,௝ = ෍൛𝑎௜௞𝑏௞௝ − 𝑏௜௞𝑎௞௝ൟ

௡

௞ୀଵ

⇒ [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 ∈ 𝔽௡×௡

CHAPTER 1

13

1.2.2.2 Systems of Equations Solving

The most straightforward way to solve a system of equations is by substitution. Substitution
requires moving all variables on the right-hand side of the equal sign and leaving only one
variable on the left-hand side. Then to find a variable solution, simplifying the equation and
substituting backwards in other equations assigns a specific value to the variable on the left-
hand side. This process is repeated for the remaining variables using the solved variables’
values until all are solved. Solving a system of equations can be represented in matrix form.
For example: Given two equations:

5𝑥ଵ + 3𝑥ଶ = 93
−4𝑥ଵ − 2𝑥ଶ = −66

can be written as Matrix A and vector x and outputs vector b, Ax=b.

𝐴 = ቂ
5 3

−4 −2
ቃ , 𝑥 = ቂ

𝑥ଵ

𝑥ଶ
ቃ , 𝑏 = ቂ

93
−66

ቃ,

This is represented as an augmented matrix combining A and b:

 ቂ
5 3

−4 −2
ቚ

93
−66

ቃ

1.2.2.2.1 Elementary Row Operations

Using Elementry Row Operations (ERO) such as: interchanging any rows, multiplying any row
by a non-zero scalar, and replacing any row by the sum of that row and any other row. Any
ERO can be chosen in any order until matrix A is converted into an identity matrix I, such that
only ones are on the diagonal and all other elements are zeros. The diagonal elements
represent the unknowns per column that become equal to the output in the rows of b after
the vertical bar. The procedure relies on the fact that its solution does not change if:

1. An equation in the system is modified by subtracting a multiple of another
equation in the system from it; and/or
2. Both sides of an equation in the system are scaled by a non-zero.
3. Equations (rows) can be reordered to maintain the strictly lower triangle equal
to zero.

These three basic rules are an effort to reduce the system to an upper triangular system,
which is easier to solve. An upper triangular matrix is defined as having every entry below the
diagonal be zero, i.e. aij = 0 if i > j. It is lower triangular aij = 0 for i < j. When there are no zeros
in the diagonal, the columns are linearly independent. This is formalised algorithmically using
Gauss Jordan Elimination as illustrated in the python notebook (xxx). Additional Rules of the
Gauss-Jordan Elimination to get to reduced row echelon form are:

4. make each row starts its non-zero coefficients with 1. This is the pivot of the
row.

CHAPTER 1

14

5. move all rows consisting of only zeroes to the bottom of the matrix.

Intuitively, the row that contains 1 in the first column should be moved to be the first row. If
non is available, divide the first row by the value of the first column to get 1 in the first
diagonal element. To turn a non-diagonal element into a zero, find another row that when
scaled by a value, will produce a negative value to the element to zero out and add them
together. The following steps solve the previous example:

1. Form the Augmented Matrix:

ቂ
5 3

−4 −2
ቚ

93
−66

ቃ

2. Divide Row 1 by 5: r1 ÷ 5

ቂ
1 0.6

−4 −2
ቚ
18.6
−66

ቃ

3. We now have a 1 as the first entry in row 1, column 1. Now let us obtain a
0 in row 2, column 1. This can be accomplished by multiplying row 1
by 4 and then adding the result to row 2, leaving row 1 unaffected: 4 *
r1 +r2.

ቂ
1 0.6
0 0.4

ቚ
18.6
8.4

ቃ

4. To have 1 in the second diagonal element, we divide row 2 by 0.4: r2 ÷ 0.4

ቂ
1 0.6
0 1

ቚ
18.6
21

ቃ

5. To have zero in the non-diagonal elements in row 1, we multiply row 2 by -
6 and then add the result to row 1, leaving row 2 unaffected: -6 * r2 +r1.

ቂ
1 0
0 1

ቚ
6

21
ቃ

This forms the equations:
1𝑥ଵ + 0𝑥ଶ = 6

0𝑥ଵ + 1𝑥ଶ = 21
Making 𝑥ଵ = 6 and 𝑥ଶ = 21. We can stop at step four since we can continue by backword
substitution forming the Gaussian Elimination only to reduce the computational steps, which
is helpful for larger matrices.

1.2.2.2.2 Matrix Inverse

A matrix inverse is defined A-1 such that A A-1=I, , where I is the identity matrix as defined
above. For solving equations of the form Ax=b, then x = A-1b is an equivalent representation
to solve for x. This makes a system of equations solved by multiplication rather than by Gauss
Jordan Elimination. To find A-1 for matrix A defined above, we can follow the same steps as
above to solve A-1A = I:

CHAPTER 1

15

1. Form the Augmented Matrix:

ቂ
5 3

−4 −2
ቚ
1 0
0 1

ቃ

2. r1 ÷ 5

ቂ
1 0.6

−4 −2
ቚ
0.2 0
0 1

ቃ

3. 4 * r1 +r2.

ቂ
1 0.6
0 0.4

ቚ
0.2 0
0.8 1

ቃ

4. r2 ÷ 0.4

ቂ
1 0.6
0 1

ቚ
0.2 0
2 2.5

ቃ

5. -6 * r2 +r1.

ቂ
1 0
0 1

ቚ
−1 −1.5
2 2.5

ቃ

Therefore 𝐴ିଵ = ቂ
−1 −1.5
2 2.5

ቃ

Finding the inverse of a matrix computationally for large matrices is inefficient. Matrix
factorisation/decomposition algorithms are used instead, as explained in chapter two. A
matrix inverse is not always defined for all given matrices, just as much as scalar zero has no
inverse. This happens when the columns of the matrix are not linearly independent, as
defined in the previous section. The parallelogram formed by these vectors has an area that
equals zero and is labelled a degenerate matrix.

The general formula to find an inverse of a matrix A ∈ ℝଶ×ଶ = ቂ
𝑎 𝑏
𝑐 𝑑

ቃ can be found by

following the same steps above:

1. Form the Augmented Matrix:

ቂ
𝑎 𝑏
𝑐 𝑑

ቚ
1 0
0 1

ቃ

2. r1 ÷ a

൥1
𝑏

𝑎
𝑐 𝑑

อ
1

𝑎
0

0 1

൩

3. -c * r1 +r2.

൦
1

𝑏

𝑎

0
𝑎𝑑 − 𝑏𝑐

𝑎

ተ

1

𝑎
0

−𝑐

𝑎
1

൪

4. r2 ÷ ௔ௗି௕௖

௔

൦1
𝑏

𝑎
0 1

ተ

1

𝑎
0

−𝑐

𝑎𝑑 − 𝑏𝑐

𝑎

𝑎𝑑 − 𝑏𝑐

൪

CHAPTER 1

16

5. -௕

௔
 * r2 +r1.

൦
1 0
0 1

ተ

𝑑

𝑎𝑑 − 𝑏𝑐

−𝑏

𝑎𝑑 − 𝑏𝑐
−𝑐

𝑎𝑑 − 𝑏𝑐

𝑎

𝑎𝑑 − 𝑏𝑐

൪

Therefore 𝐴ିଵ =
ଵ

௔ௗି௕௖
ቂ

𝑑 −𝑏
−𝑐 𝑎

ቃ

1.2.2.2.3 Orthonormal Matrix

Orthogonal matrix A of order n is defined such that the inner product of all its column or row
= 0 if different or a value if the same index.

〈a௜, a௝〉 = ൜
0, 𝑖𝑓 𝑖 ≠ 𝑗

𝛼௜ = ‖a௜‖ଶ > 0, 𝑖𝑓 𝑖 = 𝑗
, where a௜, a௝are any two rows in the matrix, or any two

columns, and 𝛼௜ is the square of the euclidian norms of the given row or column.

An orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows
are orthonormal vectors that are orthogonal and normalised such that 𝛼௜ = 1. A matrix A
∈ ℝ௠×௡ orthonormal with respect to the rows if 𝐴 ∙ 𝐴் = 𝐼 ∈ ℝ௠×௠ , and orthonormal with
respect to the columns if 𝐴 ∙ 𝐴் = 𝐼 ∈ ℝ௡×௡.
Knowing that a matrix is orthonormal means, its determinant is equal to one and it has an
inverse, 𝐴ିଵ = 𝐴். This makes solving a system of equations 𝐴𝑥 = 𝑏 𝐴ିଵ𝐴𝑥 = 𝐴ିଵ𝑏
𝐴்𝐴𝑥 = 𝐴்𝑏 𝑥 = 𝐴்𝑏 𝐼𝑥 = 𝐴்𝑏.

1.2.2.3 Matrix Determinant

The square matrix determinant measures the area of the parallelogram formed by the column
vectors of the matrix and gives valuable information about the matrix. A determinant of a
1 × 1 matrix that contains only one element is just the value of this element, which is

interpreted as the length of one dimension. A determinant of a 2 × 2 matrix = ቂ
𝑎 𝑏
𝑐 𝑑

ቃ is

defined as 𝑎𝑑 − 𝑏𝑐. This is visually defined as: ቂ𝑎 𝑏
𝑐 𝑑

ቃ. This formula is used as a divisor of the

inverse formula above. This means that if the determinant is equal to zero, the matrix has no
inverse. To generalise, we subtract the products of the diagonals from each other, beginning
from the main diagonal that goes from the top left to the bottom right. In the 2 × 2 matrix,
this covered all elements of the matrix and did triangularisation of the matrix by replacing the
second row by the result of itself minus the first row weighted with factor c/a, yielding:

ቈ
𝑎 𝑏

𝑐 −
௖

௔
𝑎 𝑑 −

௖

௔
𝑏቉ = ቈ

𝑎 𝑏

0 𝑑 −
௖

௔
𝑏቉.

CHAPTER 1

17

A determinant of a 3 × 3 matrix can not be produced using the subtraction of the diagonal
products method that will cover only 4 out of the 9 elements of the matrix. We can augment
the first two columns to the right of the matrix such that all elements fall on diagonals, as
illustrated visually below:

൥

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

อ
𝑎 𝑏
𝑑 𝑒
𝑔 ℎ

൩

Using the diagonals that have 3 numbers only, we can deduce the 3 × 3 matrix determinant
formula to be: (𝑎 × 𝑒 × 𝑖 + 𝑏 × 𝑓 × 𝑔 + 𝑐 × 𝑑 × ℎ) − (𝑐 × 𝑒 × 𝑔 + 𝑎 × 𝑓 × ℎ + 𝑏 × 𝑑 ×
𝑖).

This procedure does not generalise well to the 𝑛 × 𝑛 matrices when n > 3. The expansion by
minor method works for all values of n. It works by computing a determinant for the “minor”
which is a submatrix Aij ∈ ℝ௡ିଵ×௡ିଵthat does not include row i and column j from the original
matrix, using alternating sign and cofactors Cij. We either take each element of a column by
making j spans the columns while i is fixed to the column we are expanding on, or take all
rows and make j fixed to the row we are expanding on. It uses the formula:

𝐶௜௝ = 𝑠௜௝𝑀௜௝
𝑠ଵଵ = 1, then as we increment i along with the columns and j along with the rows, it keeps
changing the sign.

For a 3 × 3 matrix, 𝑆 = ൥
1 −1 1

−1 1 −1
1 −1 1

൩

For 𝐴 ∈ ℝଷ×ଷ = ൥
4 2 3
0 2 4
1 3 6

൩, if we expand on column 1, we can calculate the determinant as:

det(𝐴) = |𝐴| = 𝑎ଵଵ𝑠ଵଵ𝑀ଵଵ + 𝑎ଶଵ𝑠ଶଵ𝑀ଶଵ + 𝑎ଷଵ𝑠ଷଵ𝑀ଷଵ

= 4(+1) ቚ
2 4
3 6

ቚ + 0(−1) ቚ
2 3
3 6

ቚ + 1(+1) ቚ
2 3
2 4

ቚ

= 4(12 − 12) − 0(12 − 9) + 1(8 − 6)
= 4 × 0 − 0 × 3 + 1 × 2 = 2

For 𝐴 ∈ ℝସ×ସ = ቎

5
0
9
2

4 6 3
2 1 0
7 4 6
8 1 3

቏, Then, for 𝑀ଵ,ଵ = ቎

5
0
9
2

4 6 3
2 1 0
7 4 6
8 1 3

቏ = ൥
2 1 0
7 4 6
8 1 3

൩. The

complete determinant is calculated as:

det(𝐴) = |𝐴| = 0(−1) อ
4 6 3
7 4 6
8 1 3

อ + 2(+1) อ
5 6 3
9 4 6
2 1 3

อ + 1(−1) อ
5 4 3
9 7 6
2 8 3

อ

+ 0(+1) อ
5 4 6
9 7 4
2 8 1

อ

For a 4 × 4 matrix,

CHAPTER 1

18

𝑆 = ቎

1
−1
1

−1

−1 1 −1
1 −1 1

−1 1 −1
1 −1 1

቏

For 𝐴 = ቎

5
0
9
2

4 6 3
2 1 0
7 4 6
8 1 3

቏, Then, for 𝑀ଶ,ଵ = ቎

5
0
9
2

4 6 3
2 1 0
7 4 6
8 1 3

቏ = ൥
4 6 3
7 4 6
8 1 3

൩. If we expand on row

2 since it contains two zeros, the complete determinant is calculated as:
det(𝐴) = |𝐴|=𝑎ଶଵ𝑠ଶଵ𝑀ଶଵ + 𝑎ଶଶ𝑠ଶଶ𝑀ଶଶ + 𝑎ଶଷ𝑠ଶଷ𝑀ଶଷ + 𝑎ଶସ𝑠ଶସ𝑀ଶସ

= 0(−1) อ
4 6 3
7 4 6
8 1 3

อ + 2(+1) อ
5 6 3
9 4 6
2 1 3

อ + 1(−1) อ
5 4 3
9 7 6
2 8 3

อ + 0(+1) อ
5 4 6
9 7 4
2 8 1

อ

Then further reduce until we find the det(𝐴) = |𝐴|=−93.
The general formula for the determinant of any square matrix 𝐴 ∈ ℝ௡×௡is,
det(𝐴) = |𝐴| = 𝑎௜ଵ𝑠௜ଵ𝑀௜ଵ + 𝑎௜ଶ𝑠௜ଶ𝑀௜ଶ + ⋯ + 𝑎௜௡𝑠௜௡𝑀௜௡

= 𝑎ଵ௝𝑠ଵ௝𝑀ଵ௝ + 𝑎ଶ௝𝑠ଶ௝𝑀ଶ௝ + … + 𝑎௡௝𝑠௡௝𝑀௡௝
det(𝐴) = |𝐴| = ∑ 𝑎௜௝𝑠௜௝𝑀௜௝

௡
௝ୀଵ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝑖 = ∑ 𝑎௜௝𝑠௜௝𝑀௜௝

௡
௜ୀଵ for the chosen j.

Choosing the row or column with the most zeros saves much work.

Placing all cofactors in matrix C, the formula for the inverse 𝐴ିଵ =
஼೅

ୢୣ୲ (஺)
, such that (𝐴ିଵ)௜௝ =

௖ೕ೔

ୢୣ୲ (஺)
.

This process is still computationally inefficient since it requires n! operations (𝑛 × (𝑛 − 1) ×
(𝑛 − 1) … × 2 × 1). It is tractable only for small values of n.

Another method to compute the determinant is by using ERO knowing the following
properties:

1. Interchanging any two adjacent rows changes the sign of the
determinant. Non-adjacent rows interchanges require counting the
number of adjacent rows swappings; an even number of swaps will
result in a positive determinant, and an odd number of swaps will
result in a negative determinant.

2. Multiplying a row by a scalar multiplies the determinant by the same
scalar.

3. Replacing any row by the sum of that row and any other row does not
change the determinant.

4. The determinant of a triangular matrix (upper or lower) is the product
of the diagonal elements.

For a 2 × 2 matrix,

𝐴 = ቂ
5 3

−4 −2
ቃ  det(A) = D1

CHAPTER 1

19

1. r1 ÷ 5

ቂ
1 0.6

−4 −2
ቃ det(A) = D2 ÷ 5

2. 4 * r1 +r2.

ቂ
1 0.6
0 0.4

ቃ det(A) = D3 ÷ 5

D3 = 0.4  det(A) =0.4 ÷ 5 = 2
The original determinant formula is det(A) = 5(-2)-3(-4) = -10+12 = 2
For a 3 × 3 matrix,

𝐴 = ൥
0 2 4
4 2 3
1 3 6

൩  det(A) = D1

1. Swap r1 and r3, two adjacent row exchanges, with no change to the
determinant sign.

൥
1 3 6
4 2 3
0 2 4

൩ det(A) = D2

2. -4 * r1 +r2.

൥
1 3 6
0 −10 −21
0 2 4

൩ det(A) = D3

3. r2 ÷ (-10).

൥
1 3 6
0 1 2.1
0 2 4

൩ det(A) = D4÷ (-10)

4. -2 * r2 +r3.

൥
1 3 6
0 1 2.1
0 0 −0.2

൩ det(A) = D5÷ (-10)

D5 = -0.2  det(A) =-0.2 ÷ (-10) = -2

The ERO is computationally more efficient for large n and is used more often. There is also
modular triangularisation of any square matrix, such that determinants or 2x2 matrices is
used in the equations of the 3x3 and so on. This recursive calculation is defined from blocks
of triangulated matrices. The determinant of an nxn matrix becomes the product of the
diagonal elements of the triangulated matrix: 𝑑𝑒𝑡(𝐴) = ∏ det (𝐴௜௜)௡

௜భ
.

A singular matrix is a square matrix order n, such that its determinant is equal to zero;
otherwise, it is non-singular.

CHAPTER 1

20

1.2.2.4 Consistent and Inconsistent Systems of Equations

The system of equations example that was given previously is a consistent system since it has
only one valid solution. This solution is found at the point of intersection of the two lines
formed by the two given equations. For three unknowns and three equations, the solution is
at the point of intersection of the three planes formed by each equation. The same concept
applies to the higher dimensions. Systems Ax = b with one unique solution are defined as
when b is in the column space of A. For practising Gaussian Elimination, these online
calculators show all intermediate steps:

• http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.ht
ml

• https://onlinemschool.com/math/assistance/equation/gaus/

Sometimes there is more than one point of intersection, such that the system is defined to be
a consistent dependent system. This case happens when the system Ax = b has Axs = b and
Axn = 0, then xs+xn is a solution for A(xs+xn) = b (we have many solutions), which signifies that
there are linear combinations between the column vectors of A. For example:

A = ቂ1 1
2 2

ቃ , x = ቂ
𝑥ଵ

𝑥ଶ
ቃ, and b= ቂ

4
8

ቃ,

We need to find x such that Ax = 2x. To solve, we subtract 2x from both sides Ax-2x = 0 and
have this matrix to apply Gaussian Elimination on:

𝑥ଵ+𝑥ଶ = 4
2𝑥ଵ+2𝑥ଶ = 8

1. Form the augmented form ቂ1 1
2 2

ቚ
4
8

ቃ

2. R2 - 2 R1 → R2 (mulƟply 1 row by 2 and subtract it from 2 row)

ቂ
1 1
0 0

ቚ
4
0

ቃ

If we have a zero on the diagonal, then we have fewer equations than variables, i.e. we have
more than one solution, but we have the upper equation that describes the possible solutions
as the solution set: 𝑥ଵ+𝑥ଶ = 4, which means 𝑥ଵ = 4-𝑥ଶ, which gives a bound on the values of
𝑥ଵ and 𝑥ଶ. x can be

ቂ
1
3

ቃ or ቂ2
2

ቃ or ቂ3
1

ቃ and so forth.

To formalise this process for any variables, we say we are going to make the last variable a
“free variable”, meaning that it can take on any value in ℝ, and we will see how to describe

CHAPTER 1

21

the “bound variables” using the free variable. In the exercise above, we say 𝑥ଶ = b and 𝑥ଵ = 4-

b. Therefore x = ቂ4 − 𝑏
𝑏

ቃ.

We now claim that this captures all solutions of the system of linear equations. We will call
this the general solution. Try different values of b and substitute in the original matrices to
find that they always produce the same results. i.e. this is the vector space of the solution.

Because there is a non-trivial solution to Ax = 0, the null space of A has more than just the
zero vector, and A's columns are linearly dependent.

Sometimes there is no point of intersection, such that the system is defined to be inconsistent.
When system Ax = b, b is not in the column span of A, there will be no solution. For example,
solve Ax = b, for the following:

A = ൥
1 0
0 1
1 1

൩, and b = ൥
1
1
0

൩

Reduce it to row echelon form by hand or use the online calculators to find out that the last
row contains all zeros, while the last element in b is -2 since zero is not equal to -2, then b is
not in the columns space of A, and there is no solution to this system of equation. The
appended form of final output after Gaussian Elimination will be:

 ൥
1 0
0 1
0 0

อ
1
1

−2
൩

Other ways to solve a system of equations are to reduce column echelon form.

1.2.2.5 Linear Combinations and Linear Transformations

Revisiting vector spaces and generalising to linear matrix transformation, as explained in
(Geijn and Quintana-Ort´, 2008), a linear transformation L takes a vector in Rn space and
transform it to Rm can be expressed as a matrix of size m rows and n columns. A
transformation L is linear if the following properties hold for α, β as scalars, and u and v as
vectors:

1. L(αu) = αL(u)
2. L(u+v) = L(u) + L(v) The transformation is distributive with respect

to vector addition.
3. L(αu + βv) = L(αv) + L(βv)
4. L(α1v1 + α2v2 +… + αnvn) = L(α1v1) + L(α2v2) +… + L(αnvn)

CHAPTER 1

22

The unit vectors ej as defined earlier when multiplied by linear transformation matrix L,
produces the required output vector. A linear transformation is defined as L(∑ 𝑥௝𝑒௝

௡ିଵ
௝ୀ଴) for

input vector x of n elements. The following matrix describes this transformation:
y ∈ ℝ௠ = L(x) ∈ ℝ௠௫௡ = L(x0e0 + x1e1 + · · · + xn−1en−1) = x0L(e0) + x1L(e1) + · · · + xn−1L(en−1)
= x0a0 + x1a1 + · · · + xn−1a n−1,

Such that aj is the output of the transformation L at the jth unit vector ej and size m each, which
is the size of the output vector y. This linear transformation can be expressed as a matrix A as
follows;

y = L(x) = Ax = ൥
𝑎଴,଴ … 𝑎଴,௡ିଵ

⋮ ⋱ ⋮
𝑎௠ିଵ,଴ … 𝑎௠ିଵ,௡ିଵ

൩x = ൥
𝑎଴,଴𝑥଴ + … + 𝑎଴,௡ିଵ𝑥௡ିଵ

⋮ ⋱ ⋮
𝑎௠ିଵ,଴𝑥଴ + … + 𝑎௠ିଵ,௡ିଵ𝑥௡ିଵ

൩

Example: Rotation Linear Transformation matrix:

To define the Linear transformation 𝑅∅ that performs the rotation of a vector on the 2D plane
by ∅ angle, we need to define the output of the transformation on all unit basis vectors.

For the first unit vector, e0 = ቂ1
0

ቃ visualised as illustrated in Figure 3 a, a point with coordinates

(1, 0) is transformed to the 𝑅∅(1, 0) using trigonometry rules.

a) b) c)

Figure 3: a) trigonometry rules to calculate the length of a side of the right angle triangle b)
Rotation of first Unit basis using trigonometry, c) rotation of second basis vector (Geijn, 2012)

𝑅∅(1, 0) = a0 = ቂcos ∅
sin ∅

ቃ

𝑅∅(0, 1) =a1 = ቂ
− sin ∅
cos ∅

ቃ

Using the matrix notation defined previously to express the linear rotation transformation,
the following Matrix A is composed of the ai output produced from the transformation of the
unit basis:

𝑅∅ = ቂcos ∅ − sin ∅
sin ∅ cos ∅

ቃ

For rotating a vector x = (3, 5) for angle ∅ = 45, the following matrix-vector multiplication is
performed to produce the new output vector

𝑅∅(1, 0)

∅

(1, 0)

∅

(0, 1) 𝑅∅(0, 1)

cos (∅)

∅

CHAPTER 1

23

𝑅∅(𝑥) = ቂcos 45 − sin 45
sin 45 cos 45

ቃ ቂ
3
5

ቃ = ൤
3 cos(45) − 5sin(45)

3 sin(45) + 5cos(45)
൨ = ቂ

5.6568
1.4142

ቃ

In computer graphics, objects are defined by their vertices coordinates in matrix form. Various
transformation matrices are used to apply rotation, reflection on an axis, translation by
shifting points along a coordinate, skewing, and sheering are applied by matrix multiplication.
More examples of forming linear transformation matrices for spatial images are found in
(Ashburner and Friston, 1997), or generally, to do ERO in solving systems of equations are
found in (Chahal, 2018). These concepts are visualised in https://youtu.be/IrggOvOSZr4.

1.2.2.6 Matrix Calculus

The Jacobian Matrix is defined to be a matrix of partial derivatives of 𝑛 functions, 𝑑 variables,
such as 𝑛 functions and 𝑑 variables as follows:

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑓ଵ

𝛿𝑥ଵ

𝛿𝑓ଵ

𝛿𝑥ଶ
…

𝛿𝑓ଵ

𝛿𝑥ௗ

𝛿𝑓ଶ

𝛿𝑥ଵ

𝛿𝑓ଶ

𝛿𝑥ଶ
…

𝛿𝑓ଶ

𝛿𝑥ௗ

⋮ ⋮ ⋱ ⋮
𝛿𝑓௡

𝛿𝑥ଵ

𝛿𝑓௡

𝛿𝑥ଶ
…

𝛿𝑓௡

𝛿𝑥ௗ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= ൦

∇𝑓ଵ

∇𝑓ଶ

⋮
∇𝑓௡

൪

The following link has more examples to practice: http://mathonline.wikidot.com/the-
jacobian-matrix-of-differentiable-functions-examples-1. This link contains more advanced
topics using the Jacobian matrix in artificial neural networks computations “Jacobian Matrix
–the Joys of the Jacobian”: http://chalkdustmagazine.com/features/the-joys-of-the-
jacobian/.

The Hessian matrix of 𝑓is a square 𝑛 × 𝑛 symmetric matrix of second-partial derivatives of 𝑓
that is defined as follows:

ℋ𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛿ଶ𝑓

𝛿𝑥ଵ
ଶ

𝛿ଶ𝑓

𝛿𝑥ଵ𝑥ଶ
…

𝛿ଶ𝑓

𝛿𝑥ଵ𝑥௡

𝛿ଶ𝑓

𝛿𝑥ଶ𝑥ଵ

𝛿ଶ𝑓

𝛿𝑥ଶ
ଶ …

𝛿ଶ𝑓

𝛿𝑥ଶ𝑥௡

⋮ ⋮ ⋱ ⋮
𝛿ଶ𝑓

𝛿𝑥௡𝑥ଵ

𝛿ଶ𝑓

𝛿𝑥௡𝑥ଶ
…

𝛿ଶ𝑓

𝛿𝑥௡
ଶ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

The symmetry of ఋమ௙

ఋ௫೔௫ೕ
=

ఋమ௙

ఋ௫ೕ௫೔
 simplifies the computation. Hessian Matrices are helpful in

finding extreme values of multivariate functions using the matrix eigenvalues. The extreme
values of a function are the local minima, local maxima, and saddle points, which define the

CHAPTER 1

24

function curvature. These values are useful in optimisation algorithms such as gradient
descent in neural networks. The determinant of the hessian matrix (D-test) provides a
function discriminant. The inverse of this matrix identifies the least relevant components of a
function to use in pruning and reducing model complexity (Singh and Alistarh, 2020). More
details can be viewed at: http://mathonline.wikidot.com/hessian-matrices.

Intuition: A matrix represents entities’ labels in rows and features values in columns. Matrix
addition and subtraction are defined as element-wise increasing or decreasing values by
known augmenting datasets. A scalar product scales the values element-wise by a given
magnitude. A vector and matrix multiplication is a special case of matrix-matrix multiplication,
in which the inner dimensions (with their corresponding labels) should match, and the outer
dimensions are the output dimension. A matrix multiplication by a vector represents a linear
transformation on the vector, such as projection to a higher or lower dimension, rotation,
reflection, scaling, or any linear combination. This transformation is defined in terms of the
basis vectors of the corresponding coordinates. To solve a linear system of equations in matrix
form, we apply elementary row operations to decompose a matrix representing the equations
to a diagonal matrix.

References

Ashburner, J. and Friston, K.J. (1997) ‘Spatial Transformation of Images’, in Human Brain
Function. First Edition. Academic Press USA, p. 36. Available at:
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf1/.

Banner, A.D. (2007) The calculus lifesaver: all the tools you need to excel at calculus. Princeton,
NJ: Princeton University Press (A Princeton lifesaver study guide).

Carter, T.A. (1995) Linear Algebra, An Introduction to Linear Algebra for Pre-Calculus Students.
Rice University.

Chahal, J.S. (2018) Fundamentals of Linear Algebra: With Applications in Computer Science,
Economics, Engineering, Mathematics, and Physics. Boca Raton: CRC Press, Taylor and Francis
Group.

Cichocki, A. et al. (2016) ‘Low-Rank Tensor Networks for Dimensionality Reduction and Large-
Scale Optimization Problems: Perspectives and Challenges PART 1’, Foundations and Trends®
in Machine Learning, 9(4–5), pp. 249–429. Available at: https://doi.org/10.1561/2200000059.

Deisenroth, M.P., Faisal, A.A. and Ong, C.S. (2019) Mathematics for Machine Learning.
Cambridge University Press.

Downey, A. (2013) Think Bayes. First edition. Sebastopol, CA: O’Reilly.

CHAPTER 1

25

Dym, H. (2007) Linear algebra in action. Providence, R.I: American Mathematical Society
(Graduate studies in mathematics, v. 78).

Farrell, P. (2020) The statistics and calculus workshop a comprehensive introduction to
mathematics in Python for artificial intelligence applications. Available at:
http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781800208360
(Accessed: 25 October 2021).

Geijn, R. van de (2012) ULAFF: Linear Algebra: Foundations to Frontiers. Available at:
http://www.ulaff.net/ (Accessed: 6 March 2021).

Geijn, R.A. van de and Quintana-Ort´, E.S. (2008) The Science of Programming Matrix
Computations. www.lulu.com. Available at:
http://z.cs.utexas.edu/wiki/LA.wiki/books/TSoPMC/.

Gelß, P. (2017) The Tensor-Train Format and Its Applications. PhD Dissertation. Universität
Berlin Institut für Mathematik.

Ghosal, S. and Vaart, A.W. van der (2017) Fundamentals of nonparametric Bayesian inference.
Cambridge ; New York: Cambridge University Press (Cambridge series in statistical and
probabilistic mathematics, 44).

Kolda, T.G. and Bader, B.W. (2009) ‘Tensor Decompositions and Applications’, SIAM Review,
51(3), pp. 455–500. Available at: https://doi.org/10.1137/07070111X.

Lu, H., Plataniotis, K.N. and Venetsanopoulos, A.N. (2014) Multilinear subspace learning:
dimensionality reduction of multidimensional data. Boca Raton, Florida: CRC Press/Taylor &
Francis Group (Chapman & Hall/CRC machine learning & pattern recognition series).

Singh, S.P. and Alistarh, D. (2020) ‘WoodFisher: Efficient Second-Order Approximation for
Neural Network Compression’. arXiv. Available at: http://arxiv.org/abs/2004.14340
(Accessed: 19 September 2022).

Sun, L.-H., Huang, Xin-Wei, Alqawba, Mohammed S. and Kim, J.-M., Emura, Takeshi (2020)
Copula-Based Markov Models for Time Series: Parametric Inference and Process Control.
Singapore: Springer Singapore : Imprint: Springer.

Watts, S. (2016) ‘The Gaussian Copula and the Financial Crisis: A Recipe for Disaster or Cooking
the Books?’, p. 25.

