
Chapter 2: Subspace Learning 

 
As mentioned in chapter one, datasets are present in matrix forms, in which a row is a 
sample or separate entity described by values (elements of a vector) given in the columns 
representing the different features. Each feature is a dimension to this dataset with a 
random variable in an acceptable domain of values with a minimum, maximum, mean, 
median and standard deviation and variance and covariance with other dimensions. These 
measures explain the dynamics or the structure of the dataset of the sample being studied. 
Various methods explain the different levels of analysis, such as: 

 Descriptive statistics of the sample. These will be described in section 2.1. 
o Analysing the variance and covariance of the features observed or 

measured. 

 Inferential statistics methods infer new knowledge based on the dataset sample 
provided. This can be causal analysis or prediction of future values. 

 Linear subspace learning (LSL) reduces the data dimensionality using various 
methods. These methods are divided into projective methods and manifold 
modelling methods.  

o The projective methods identify latent variables or factors or indicators 
that are unobserved in the dataset but explain the correlations between 
the observed variables. This is useful for feature extraction and to 
reduce the dimensionality of a dataset. These methods use linear 
projections such as principal component analysis (PCA), Singular Value 
Decomposition (SVD), independent component analysis (ICA), linear 
discriminant analysis (LDA), canonical correlation analysis (CCA) and 
partial least squares (PLS), Factor Analysis (FA), Non-Negative Matrix 
Factorisation (NMF), and the generalised Nystr�̈�m method. These will 
be described in section 2.2.  

o The manifold modelling methods learn a lower-dimensional manifold 
containing that data points that are embedded in the original high-
dimensional space preserving the non-linear structures ignored in the 
projective methods. Multidimensional scaling (MDS) maps the original 
dataset to a lower-dimensional manifold without modelling the 
manifold. Methods that model the lower-dimensional manifolds include 



CHAPTER 2 

2 

Isometric Feature map (Isomap), locally linear embedding, and spectral 
clustering. These will be described in section 2.3. 

 Sometimes the data are not separable in the lower dimension, and mapping to a 
higher dimension makes it linearly separable there. The SVM and the Kernel 
trick will be described in section 2.4, and the Kernel trick will be further 
explained using representation theory in chapter five. 

 Multimodal and heterogenous datasets analysis (multiway). This process is 
called multilinear subspace learning (MSL), which directly extracts features from 
their multidimensional space to lower-dimensional space. These will be 
discussed in chapters three and onward. 

2.1 Descriptive statistics and analytic statistics  

Descriptive statistics explain the values of features captured in 2-dimensional arrays. A 
complete review of statistical analysis with python is found in books such as (Farrell, 2020). 
This book will review only the statistical concepts that we will need in the remaining 
discussions in this or the following chapters. The simplest understanding of a dataset’s 
numerical values domains is performed by identifying the minimum, the maximum, the 

mean  �̅� = ∑ 𝑥 , the median = 𝑥 , the mode (the most occurring value), and the first, 

second and third quartile. To identify how the values are distributed around the mean and 
towards the extreme values, a standard deviation is calculated as the square root of the 
average of the squared difference of each value of x and the mean 𝑥, 𝑠𝑡𝑑 𝑑𝑒𝑣 (𝑥) =

 
∑ (  ̅)

. The variance is the standard deviation squared, which is a more stable metric. 

The mean and the standard deviation are the main metrics of the central limit theorem 
illustrated in the normal (Gaussian) distribution. This is considered first-order statistics. 

On the other side, an analysis of the observed features’ variance can explain the dataset’s 
structure and how the observed features change together and affect each other. The 
variance of a variable is defined as the squared standard deviation. The covariance between 
two features in the dataset explains how a change in one value can or can not affect the 
other. A covariance between two features x and y vectors are measured as ∑ =

𝑐𝑜𝑣 (𝑥, 𝑦) =  
∑ (  ̅)(  )

  . A covariance square matrix is measured for all covariances 

between all features and each other, in which the diagonal values are the variance of one 
feature with its mean, and it is calculated  as follows: 
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𝑣𝑎𝑟(𝑥 ) ⋯ 𝑐𝑜𝑣 (𝑥 , 𝑥 )
⋮ ⋱ ⋮

𝑐𝑜𝑣 (𝑥 , 𝑥 ) ⋯ 𝑣𝑎𝑟(𝑥 )
 

A correlation coefficient r between two features x and y is measured as 𝑟 =
( , )

( ) ( )
 

The correlation coefficient r ranges from -1, indicating negative correlation (inverse 
proportional features, an increase in one causes a decrease in the other), to 0, indicating 
uncorrelated features, to 1, indicating positive correlation (proportional features, an 
increase in one causes an increase in the other). The outcome is identifying redundant 
features that do not add much information by being highly correlated with another feature 
in the dataset. This information is captured by linear Algebra as second-order statistics. The 
remaining chapters in the book will handle the cases of multilinear algebra, which is 
considered higher-order statistics. 

Methods of dimensionality reductions are applied to reduce the number of 
features/variables to include only the features that contribute more to the variance. The 
above-explained methods handle the observed features as measured without the required 
extra preprocessing steps of handling missing values, sample size, unbalanced datasets, 
power analysis, and others to complete an efficient statistical analysis of a dataset. 

2.2 Projective Methods - Linear Subspace 
Learning (LSL) 

We have learned in chapter one that vectors usually are members of a vector space under 
linear transformations of addition and scalar multiplication. Learning a low-dimensional 
subspace representing a dataset is the primary method in dimensionality reduction that 
does not lose much information. When we multiply a vector v in a higher dimension m by a 
linear transformation matrix M of rows equals the high dimensions of the input vector m, 
and the required lower dimension in columns as n, this process projects the input vector to 
the lower dimension u specified by the projection matrix. 𝑣𝑀 =  𝑢 , where 𝑣 ∈ ℝ , 𝑀 ∈

ℝ × , 𝑢 ∈ ℝ .  

Linear Subspace Learning (LSL) methods identify various structures in matrices using various 
approaches. These methods help identify the dynamics of a dataset such that the 
complexity can be reduced by removing linearly dependent features and redundant features 
and applying projection on lower dimensions capturing as much as possible from the 
identified structure. The simplest LSL is the rank-1 decomposition of a given matrix X of 
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linearly dependent columns, such that X=abT, where a and b are two vectors that can 
construct matrix X as follows: 

𝑋 =
1 2 3
2 4 6
3 6 9

= [1 2 3]
1
2
3

 

This is generalised as rank-R factorisation, such that X is composed of R rank-1 components: 
𝑋 = 𝑎 𝑏 + ⋯ + 𝑎 𝑏 = 𝐴𝐵 . This will be further explained in the Singular Value 
Decomposition (SVD) later as the foundation for matrix compression and completion 
algorithms. Example matrix factorisation algorithmic approaches include principal 
component analysis to reduce the dimensionality while capturing the most variance, which 
will be further explained below. Also, Dictionary Learning algorithms aim to estimate from 
the known observations X, the sparse dictionary vectors and the Mixing Matrix of these 
vectors constructing the observations. The estimated dictionary vectors should be as sparse 
as possible, so combinations of these dictionary vectors can represent a high dimensional 
large dataset. Similarly, Factor Analysis algorithms estimate hidden/latent factors and their 
effects on the observations. Example Application is extracting sources in Blind Source 
Separation (BSS) problem; BSS aims to learn separate data components representing an 
entangled dataset. Each algorithm adds additional constraints to be suitable for different 
problems. Estimating two unknowns from one known is an underdetermined system of 
equations on which various iterative algorithms are proposed.  

These two-way analysis methods apply covariance analysis between the features’ pairs or 
other pair-wise statistical analyses. We can repeat the data collection in different time slots 
adding a third dimension of the time series. We can also divide a column into groups such as 
age groups 1-3, 3-5, and so forth. This needs a three-way analysis or higher that will 
gradually be described in this book starting from chapter three. We can correlate different 
entities/objects (like students and subjects) using different variables in which different 
modes will describe either an object or a variable based on the analysis requirements (Lu, 
Plataniotis and Venetsanopoulos, 2014). 

Among various LSL algorithms, principal component analysis (PCA) and linear discriminant 
analysis (LDA) are the two most widely used in many applications. PCA is an unsupervised 
algorithm that does not require labels for the training samples, while LDA is a supervised 
method that makes use of class-specific information (Lu, Plataniotis and Venetsanopoulos, 
2011). 
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2.2.1 Motivational Problem 

A motivational problem will illustrate how to model a real-life problem into a matrix and 
what the eigenpairs represent to help understand eigenvalues and eigenvectors. The 
following table shows how three pizza kitchens on campus, labelled by their locations as A, 
B, and C, historically deliver pizza to all locations. Figure 1 illustrates the transition matrix of 
drivers’ locations on the left and the graph representing the transitions on the right.  

 
A B C 

A 0.3 0.3 0.4 

B 0.4 0.4 0.2 

C 0.5 0.3 0.2 

 

 

 

Figure 1: Pizza delivery drivers’ location distribution transition matrix and graph. 

The first row in this table is interpreted as follows: Kitchen in location A deliver 30% of the 
calls it receives to location A, 30% to location B and 40% to location C. The other two rows 
read the same. Delivery drivers start from the row location and end at the column location 
after one delivery based on the given probability distribution. The rows are the probability 
distribution of all possibilities and sum to 1. A driver must be at one of the three locations. 

Let 𝑝(K) denote the probability that a driver starts at location B, ends at B, after k 
deliveries 

Let 𝑝(k)  denote the probability that a driver starts at location A, and ends at C after k 
deliveries. 

Same for  𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) ,  𝑝(k) , and  𝑝(k)  

Then predicting if a driver starts at C, what is the probability it will be at B after 2 
deliveries? Based on probabilities in the first move: 

𝑝(2) = 𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) +  𝑝(1) 𝑝(2) =0.33 

Notice that this is the dot product between row 3 (C) and column 2 (B). 

Another example, if a driver starts at B, the probability of being at B after two deliveries 
is: 
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𝑝(2) =  𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) +  𝑝(1) 𝑝(2) =0.34 

This is the dot product between row B and column B: 

  𝑝(2) =  0.2 𝑝(k) + 0.4 𝑝(k) + 0.3 𝑝(k) 

𝑝
( ) is the probability vector denoting a driver’s probability after k deliveries starting 

from location l, using the probabilities represented as a (transition) matrix S.  

𝑝
( )

=  

𝑝(k)

𝑝(k)

𝑝(k)

,  𝑆 =  
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 

The transition from delivery number k to delivery k+1 is then written as the matrix-
vector product (multiplication). 

𝑝(k+1)

𝑝(k+1)

𝑝(k+1)

=  
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 

𝑝(k)

𝑝(k)

𝑝(k)

 

To know all probabilities from all locations to all locations after two deliveries, we can do 
matrix-matrix multiplication two times: S2. 

𝑆 =  
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

 

We can easily now calculate where all drivers will be after three deliveries by another matrix 
multiplication, tracing where they start at the rows and where they end on the columns: 

𝑆 𝑆 = 𝑆 =
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

 
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 = 
0.385 0.333 0.282
0.390 0.334 0.276
0.393 0.333 0.274

 

Repeating this process using Python rather than by hand, we can find the probabilities for 
the drivers’ location distribution for the next eight days: 
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𝑆( 𝑆( ) 𝑆( ) 

 
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 
0.41 0.33 0.26
0.38 0.34 0.28
0.37 0.33 0.30

 

𝑆( 𝑆( ) 𝑆( ) 

 
0.385 0.333 0.282
0.390 0.334 0.276
0.393 0.333 0.274

 
0.3897 0.3333 0.2770
0.3886 0.3334 0.2780
0.3881 0.3333 0.2786

 

𝑆( 𝑆( ) 𝑆( ) 

 
0.38873 0.33333 0.27794
0.38894 0.33334 0.27772
0.38905 0.33333 0.27762

 
0.388921 0.333333 0.277746
0.388878 0.333334 0.277788
0.388857 0.333333 0.277810

 

𝑆( 𝑆( ) 𝑆( ) 

 0.3888825 0.3333333 0.2777842
0.3888910 0.3333334 0.2777756
0.3888953 0.3333333 0.2777714

0.38889017 0.33333333 0.2777765
0.38888846 0.33333334 0.2777782
0.38888761 0.33333333 0.27777906

 

  

Observe that the prediction starts to change less and less as we go from one delivery to the 
next in the future. As columns change less and less below a specified threshold, we say that 
the system converged. 

If a vector of the initial distribution of drivers per location, such as [0.3, 0.3, 0.3], is 
multiplied by S, it will show the distribution of drivers after one delivery: 

import numpy as np 
S = np.array( 
    [[0.3, 0.3, 0.4], 
    [0.4, 0.4, 0.2], 
    [0.5,0.3,0.2]]) 
p = S 
for k in range(8): 
    print(p) 
    p =  p.dot(S)        



CHAPTER 2 

8 

𝑝( ) =  [0.3 0.3 0.3] 
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 =  [0.36 0.3 0.24] 

After two deliveries throughout the day, S2, the right-hand side, will converge to the same 
number no matter what we started from.  

𝑝( ) =  [0.3 0.3 0.3] 
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

 =  [0.3504 0.3 0.2496] 

After nine deliveries throughout the day, S9, the right-hand side, will converge to the same 
number no matter what we started from. 

𝑝( ) =  [0.3 0.3 0.3] 
0.38888894 0.33333333 0.27777773
0.38888887 0.33333333 0.27777779
0.38888884 0.33333333 0.27777783

  

=  [0.35 0.3 0.25] 

 

From the 10th delivery onward, it converges to this drivers’ location vector and does not 
change any future: [0.35 0.33 0.25] 

If we continue to predict the drivers’ locations after many deliveries from now by executing 
the previous python loop for 64 iterations for the same probability distributions of calls and 
deliveries, we will observe that the prediction does not change very much. The resulting 
drivers’ locations vectors will hold approximately the prediction for what typical location 
they might be at after any number of deliveries. 

If we change the initial drivers’ locations vector to reflect any initial distributions, we will 
also end up with the same typical drivers’ locations prediction. Try the code snippet, you will 
find that the code converged to the same vector as before on the 10th iteration only. 

At any given time step, 35% of the drivers will be at location A, 33% at location B, and 25% 
at location C. The drivers’ initial distribution should not change the typical distribution after 
several deliveries. 

These are called Markov Processes. These kinds of techniques apply to many problems. For 
example, the Google page rank algorithm determines which website is the most important 
(highest rank) based on the probability that the user will select the page link from several 
incoming links to other pages. Another example is predicting the next day’s weather based 
on today’s weather using probabilities collected over several days in a given location. We 
predicted the next drivers’ location distribution after one delivery by multiplying the 
probabilities of calls location distribution and transitions in matrix S by the current drivers’ 
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location distribution: d(k+1) = Sd(k), which can be extended to any number of deliveries 
prediction by d(k) = Skd(0), to observe that eventually d(k+1) ≈Sd(k). This diminished change 
means that d(k+1) came arbitrarily close to an eigenvector, x, associated with the eigenvalue 
𝝀 =1 of matrix S: Sx = 𝝀x. For transition matrices, the dominant Eigenvalue 𝝀 is1.  

The dominant Eigenvector represents the typical drivers’ location distribution in the 
previous example. This is known as the (algebraic) eigenvalue problem. Scalars 𝜆 that satisfy 
Ax = 𝜆x for non-zero vector x are known as Eigenvalues, while the corresponding non-zero 
vector x to each 𝜆 Eigenvalue is known as Eigenvectors. From the previous calculations, we 
can answer questions like “what is the typical drivers’ location distribution for this Pizza 
kitchen calls’ distribution?” (Answer: 35% at A, 33% at B, and 25% at C). A similar approach 
can be used to answer questions like “what is the most requested pizza topping in a given 
order?” 

The power method finds an eigenvector associated with the largest Eigenvalue (in 
magnitude). It starts by guessing an initial value for x, then loops multiplying Ax to get new 
x, optionally dividing the new x, by the last element of the previous value (or any 
normalisation step), until the new value does not change (much) anymore. The dominant 

Eigenvalue is the Rayleigh quotient of eigenvector x, which is  . 

Matrices, Markov chains, Eigenvalue and Eigenvectors have many real-world applications. 
There are many, many examples of the use of Markov chains. A brief look at some 
significant applications can be found in (VON HILGERS and LANGVILLE†, no date) (Geijn, 
2012), (Carter, 1995). 

import numpy as np 
rand=np.random.RandomState(235) 
A = np.array(rand.random(size=(3, 3))) 
x = np.array(rand.random(size=3)) 
x_Old = np.array(rand.random(size=3)) 
i=0 
while np.isclose(x, x_Old).all() == False: 
    i=i+1 
    x_Old = x 
    x =  A.dot(x) 
    if x[-1] != 0: 
        x = np.true_divide(x, x[-1]) 
    print("i: ", i, " x = ", x) 
eigval = np.true_divide(x.T.dot(A.dot(x)), x.T.dot(x)) 
print ("Dominant eigen value = ", eigval) 
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2.2.2 Eigendecomposition 

The algebraic eigenvalue problem is a matrix decomposition method that reveals various 
algebraic properties that make working with matrices easier. Scalars 𝝀 are the eigenvalues 
of matrix A that satisfy Ax = 𝝀x for non-zero eigenvectors x. The pizza delivery drivers’ 
location distribution examples in the previous section illustrate how a Markov Process uses 
a transition Matrix, such that the power method converges to the most dominant 
Eigenvector corresponding to the largest Eigenvalue, which was 1 for transition matrices. 
Then we saw how to generalise the power method to identify the most dominant eigenpair 
for any given non-transition matrices using the Rayleigh quotient for the dominant 
Eigenvalue. We need another method to find all eigenvalues and corresponding 
eigenvectors (eigenpairs). Eigenvalues and eigenvectors often explain the bases that are 
invariant to linear transformations. All eigenvalues are non-negative, real numbers because 
covariance matrices are symmetric and positive semi-definite.  

In Python: 

# eigen decomposition of a matrix A 
from numpy import linalg as LA 
eignVal, eignVec = LA.eig(A) 

 
2x2 Matrix Example: 

To find the Eigenvalues and Eigenvectors of a matrix A ∈ ℝ ×  = 7 3
3 −1

, we need to 

perform the following steps: 

Step 1: Find the characteristic polynomial of 𝑨. Since 𝐼𝑥 =  𝑥 for any given vector x and the 
identity matrix I, then Ax= 𝜆𝑰x, therefore  Ax- 𝜆𝑰x = 0  (A- 𝜆𝑰)x = 0, for Eigenvector x 

and Eigenvalue 𝜆. Since x should be a non-zero vector, solving for (A- 𝜆𝑰) = 0, by 

calculating the determinant is called the characteristic equation. This will find the non-

zero solution. 

𝑴=𝑨−𝜆𝑰 =
7 − λ 3

3 −1 − λ
  

Det(M) = |𝑴|=|𝑨−𝜆𝑰| , using the 2x2 determinant rule: 

=
7 − λ 3

3 −1 − λ
 

= (7 − λ)(−1 − λ) − 9 =  λ −  6λ −  16 = (λ − 8)(λ + 2) 

Step 2: Find the roots of the characteristic polynomial of 𝑨 to obtain the Eigenvalues of 𝑨. 
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 (λ − 8)(λ + 2) = 0 Then the roots are λ = 8, λ = −2 

Step 3: Repeat the following (i) and (ii) steps for each Eigenvalue 𝜆 of 𝑨 

For Eigenvalue λ = 8: 

(i)Form the matrix 𝑴=𝑨−5𝑰 

7 − 8 3
3 −1 − 8

 =   
−1 3
3 −9

  

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero 
vectors are linearly independent Eigenvectors of 𝑨 

belonging to 𝜆.) 

−1 3
3 −9

𝑥
𝑥 = 0 

−𝑥 +  3𝑥 =  0, and 3𝑥 − 9𝑥 = 0  

Then 𝑥 =  3𝑥  

The Eigenvector x= 
3𝑥
𝑥

, or 𝑥 3
1

, for 𝑥 ≠ 0  

such that 3
1

is one possible Eigenvector. 

For Eigenvalue λ = −2: 

(i)Form the matrix 𝑴=𝑨−3𝑰 

7 + 2 3
3 −1 + 2

 =   
9 3
3 1

  

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero 
vectors are linearly independent Eigenvectors of 𝑨 

belonging to 𝜆.) 

9 3
3 1

𝑥
𝑥 = 0 

9𝑥 +  3𝑥 =  0, and 3𝑥 + 𝑥 = 0  

Then 3𝑥 =  −𝑥  

The Eigenvector x=
𝑥

−3𝑥 or 𝑥 1
−3

 for 𝑥 ≠ 0  

such that 1
−3

is one possible Eigenvector. 

3x3 Matrix Example: 

To find the Eigenvalues and Eigenvectors of a matrix A ∈ ℝ ×  = 
4 1 −1
2 5 −2
1 1 2

, we follow the 

same steps as above: 

Step 1: Find the characteristic polynomial of 𝑨. 

𝑴=𝑨−𝜆𝑰 = 
4 − λ 1 −1

2 5 − λ −2
1 1 2 − λ

 

Det(M) = |𝑴|=|𝑨−𝜆𝑰| , using the 3x3 determinant rule: 

= 
4 − λ 1 −1

2 5 − λ −2
1 1 2 − λ

4 − λ 1
2 5 − λ
1 1

 

= (4 − λ)(5 − λ)(2 − λ) − 2 − 2 + (5 − λ) + 2(4 − λ) − 2(2 − λ) 

=  −λ  +  11λ  −  39λ +  45 = −(λ − 5)(λ − 3)  
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Step 2: Find the roots of the characteristic polynomial of 𝑨 to obtain the eigenvalues of 𝑨. 

−(λ − 5)(λ − 3) = 0   The roots are λ = 5, λ = 3 

Step 3: Repeat (i) and (ii) for each eigenvalue 𝜆 of 𝑨 

For Eigenvalue λ = 5: 

(i)Form the matrix 𝑴=𝑨−5𝑰 

4 − 5 1 −1
2 5 − 5 −2
1 1 2 − 5

=   
−1 1 −1
2 0 −2
1 1 −3

 

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero 
vectors are linearly independent Eigenvectors 

of 𝑨 belonging to 𝜆.)
−1 1 −1
2 0 −2
1 1 −3

𝑥
𝑥
𝑥

= 0 

Then 𝑥 =  𝑥 , 𝑥 = 2𝑥  

The Eigenvector x= 
𝑥

2𝑥
𝑥

, or 𝑥
1
2
1

, for  

𝑥 ≠ 0 such that 
1
2
1

is one possible 

Eigenvector. 

For Eigenvalue λ = 3: 

(i)Form the matrix 𝑴=𝑨−3𝑰 

4 − 3 1 −1
2 5 − 3 −2
1 1 2 − 3

=   
1 1 −1
2 2 −2
1 1 −1

 

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero 
vectors are linearly independent Eigenvectors 

of 𝑨 belonging to 𝜆.)
1 1 −1
2 2 −2
1 1 −1

𝑥
𝑥
𝑥

= 0 

Then 𝑥 +  𝑥 =  𝑥  

The Eigenvector x= 
𝑥
𝑥

𝑥 + 𝑥
, or 𝑥

1
0
1

+

 𝑥
0
1
1

, for 𝑥 ≠ 0, 𝑥 ≠ 0,  such that 
1
1
2

is 

one possible Eigenvector. 

PS the Product of Eigenvalues is equal to the determinant of the matrix. For the First 

example, det(A) = det 7 3
3 −1

= −16 = 8 x -2 = -16. For the second example, det(A) = 4 . 

det 5 −2
1 2

-1 . det 2 −2
1 2

-1 . det 2 5
1 1

= 45 = 5 𝑥 3 𝑥 3 = 45 

Eigenvalues and Eigenvectors of a square matrix have many applications in Communication 
systems, engineering disciplines such as in designing bridges, art applications such as music 
composition, and signal processing such as designing car stereo systems and concert halls, 
among many more. An online calculator can be found at 
https://www.symbolab.com/solver/matrix-eigenvalues-calculator. 
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This simple method is not computationally efficient for larger matrices, as it might attempt 
to create memory a typical computer might not have. An algorithm based on the QR 
factorisation is used, and various iterative methods are similar to the power method and its 
convergence criteria. Calling any of these functions such as numpy.linalg.eig, usually achieve 
speed-ups by employing the available hardware in the machine to process the computation 
in parallel.  

Another computational consideration is the Roundoff errors. These affect small and large 

matrices equally.  is stored as a rounded decimal point figure using normal notation. In 

normal notation, a number is written as m x 10a where 0.1 ≤ |m| < 1. (In scientific notation, 
1 ≤ |m| < 10), where m is mantissa and a is abscissa. The number 1234 is represented as 
0.1234 x 104, mantissa = 0.1234 and abscissa = 4. This representation affects the accuracy of 
any numerical calculations, particularly multiplication. This is why the log of any value is 
often used to turn multiplication into an addition operation. 

2.2.3 Principal Component Analysis (PCA) 

The principal components analysis is defined as linear feature projection on new orthogonal 
coordinates such that it captures the most variance in the first coordinate (principal 
component) and lesser remaining variance in decreasing order in the following coordinates. 
These principal components are the eigenvectors of the dataset and are orthogonal to each 
other and considered uncorrelated factors. Finding the projection of the original dataset 
onto the most significant initial principal components (typically 2 or 3) will produce an 
uncorrelated model that captures the most variance of the original dataset in which the 
signal-to-noise ratio is highest. The steps to calculate the PCA are simply calculating the 
eigenvectors of the covariance matrix of a dataset. 

PCA can be calculated using a direct projection matrix such that y = UTx, where y ∈ ℝ  is the 
projected data, U ∈ ℝ ×  is the projection matrix containing the p Eigenvectors, and x ∈
ℝ = (𝑥 − �̅�) is the centred m-dimensional dataset standardised to zero-mean. The 
projected dataset on each principal component ui will produce a new lower dimension 
dataset, on which a component Cj for 0 ≤ j ≤ p-1 (p being the lower dimension number of 
components capturing the most variance) will be a weighted sum of the original dataset 
features: 

Cj = w1(x1) + w2(x2) + ... + wn(xn). 

The steps are as follows: 

Step 1: Center the dataset around zero means. 

1. 𝑋 = ∀𝑚 (𝑥 −  �̅�) 
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Step 2: Calculate the scatter matrix ST of the dataset, as the covariance matrix multiplied 
by (m-1)  

2. 𝑆 =   ∑ 𝑥 𝑥  = XXT 
Step 3: Solve for the first component:  

3. 𝑢 =  argmax 𝑢 𝑆 𝑢  subject to 𝑢 𝑢 = 1 as a normalisation constraint.  

4. This can be solved by Lagrange multiplier 𝜆 to include the constraint in the equation: 

𝜓 = 𝑢 𝑆 𝑢 − 𝜆(𝑢 𝑢 − 1) 
1. Then we minimise by differentiating with respect to 𝑢 : and set to 0,  

𝛿𝜓

𝛿𝑢
=  S 𝑢 −  λ𝑢 = (S −  λI)𝑢 = 0 

Therefore, λ and u1 are an Eigenvalue and its corresponding Eigenvector of ST and the 
quantity to be maximised is: 𝑢 𝑆 𝑢 = 𝑢 λ𝑢 =  λ𝑢 𝑢 =  λ𝐼 =  λ. This will be the 
largest Eigenvalue and the corresponding Eigenvector as the first principal component. 

Step 4: Solve for remaining p components by adding the orthogonality constraints by 
repeating steps 5:7 for each Eigenvector. For example, solving for 𝑢  require the following 
steps: 

5. 𝑢 =  argmax 𝑢 𝑆 𝑢  subject to 𝑢 𝑢 = 1 as a normalisation constraint and 

𝑢 𝑢 = 0 as the orthogonality constraint with the previous Eigenvector. 
6. Again use the Lagrange multiplier 𝜇 to include the second constraint in the 

equation: 𝜓 = 𝑢 𝑆 𝑢 − 𝜆(𝑢 𝑢 − 1) − 𝜇(𝑢 𝑢 ) 
7. Differentiate with respect to 𝑢  and set = 0,  

𝛿𝜓

𝛿𝑢
=  S 𝑢 −  λ𝑢 − 𝜇𝑢  

8. Multiply on the left by 𝑢  = 𝑢 S 𝑢 −  λ𝑢 𝑢 − 𝜇𝑢 𝑢 = 0 → 𝜇 = 0 

9. The first two terms are zero, as shown earlier and 𝑢 𝑢 = 1, leaving it =

(S −  λI)𝑢 = 0 as for 𝑢 . 
Step 5: Assemble the projection Matrix U columns,  𝒖𝟏, 𝒖𝟐, … , 𝒖𝒑 

Step 6: Project the dataset y = Ux 

PCA can be expressed in a more succinct matrix form. If E is the (orthonormal) matrix of 
column Eigenvectors of the covariance matrix C, and Λ the diagonal matrix of (non-negative) 
Eigenvalues of C, then CE = EΛ. The order of the columns of E needs to be such that the λi ≡ 
Λii is in descending order: λi ≤ λi-1 ∀ i = 1, . . . , d − 1. Now for some unit vector n1 ∈Rd 
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consider the quantity: 𝑛 𝐸 𝐶𝐸𝑛 = 𝑛 Λ𝑛 . The left-hand side is the variance of the 
projections of the (centred) data along the unit vector principal component En1. The right-
hand side is ∑ 𝑛 𝜆 . 

The variance of the data projected along the direction of this principal component is just λi. 
This can be repeated until the required variance is captured by searching for the unit vector 
n2 that is orthogonal to n1 (i.e., for which n21 = 0) and which maximises the right-hand side, 
which is given by n2i = δi,2 (Burges, 2009). 

Many PCA-based algorithms exist, including Kernel PCA, Probabilistic PCA, and oriented PCA. 
In summary, PCA projects the existing data on fewer linearly independent components 
capturing as much variance of the data as possible. When the remaining variance along all 
directions orthogonal to the p principal components chosen is zero or very negligible, then 
the dataset lies along a lower-dimensional manifold ∈ ℝ  embedded in Rm. (Lu, Plataniotis 
and Venetsanopoulos, 2014). 

PCA Matrix example: 

Find the PCA of a matrix X ∈ ℝ ×  = 

2 3 1
3 1 0
2 0 1
5 0 2

 

Step 1: Data preprocessing: remove mean values from each feature 

# First Step by Step calculations, but using implemented functions for mean, 
covariance, and Eigendecomposition. 
import numpy as np 
X = np.array([[2,3, 1], [3, 1, 0], [2, 0, 1], [5, 0, 2]]) 
X 

array([[2, 3, 1], 

       [3, 1, 0], 

       [2, 0, 1], 

       [5, 0, 2]]) 

 
# Calculate the mean of each column 
M = np.mean(X.T, axis=1) 
M 

array([3., 1., 1.]) 

 
#center columns by subtracting column means 
C = X - M 
C 

array([[-1.,  2.,  0.], 
       [ 0.,  0., -1.], 
       [-1., -1.,  0.], 
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       [ 2., -1.,  1.]]) 
Step 2: Calculate the covariance matrix. 

#calculate covariance matrix 
sigma = np.cov(C.T) 
sigma 

array([[ 2.        , -1.        ,  0.66666667], 
       [-1.        ,  2.        , -0.33333333], 
       [ 0.66666667, -0.33333333,  0.66666667]]) 
Step 3: Calculate the eigenvectors and eigenvalues. 

 
# eigen decomposition of covariance matrix 
from numpy import linalg as LA 
eignVal, eignVec = LA.eig(sigma) 
eignVal, eignVec 

(array([3.19940358, 1.0821583 , 0.38510479]), 
 array([[-0.70083477,  0.57765664, -0.41850141], 
        [ 0.65971771,  0.74802961, -0.07227894], 
        [-0.27129904,  0.32674839,  0.90533548]])) 
Step 4: Select Principal components. This small example did not reduce the dimensionality 
and selected all principal components. Sometimes you need to reduce the dimensionality to 
2 or 3 PCs out of 10 or more features by capturing the highest variance by checking the 
“elbow” in the curve of a scree plot. 

 

# Print principal components 
PC1 = eignVec[:,0].T.dot(C.T) # u0.x 
PC2 = eignVec[:,1].T.dot(C.T) # u1.x 
PC3 = eignVec[:,2].T.dot(C.T) # u2.x 
print("PC1: ", PC1) 
print("PC2: ", PC2) 
print("PC3: ", PC3) 
PC1:  [ 2.02027019  0.27129904  0.04111706 -2.33268629] 

PC2:  [ 0.91840258 -0.32674839 -1.32568625  0.73403206] 

PC3:  [ 0.27394352 -0.90533548  0.49078035  0.1406116 ] 

Step 5: Derive the new projected dataset: Projected_data = normalised_data x 
selected_principal_components. 

 

# project data 
P = eignVec.T.dot(C.T) 
P.T 
 

array([[ 2.02027019,  0.91840258,  0.27394352], 
       [ 0.27129904, -0.32674839, -0.90533548], 
       [ 0.04111706, -1.32568625,  0.49078035], 
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       [-2.33268629,  0.73403206,  0.1406116 ]]) 
 

# Using Sklearn PCA implementation 
#Second numpy Calculations 
from sklearn.decomposition import PCA 
 
#create PCA instance 
pca = PCA(3) 
#fit on Data 
pca.fit(X) 
#access values and vectors 
print("PCA Components = ", pca.components_) 
print("PCA Explained variance ", pca.explained_variance_) 
print("PCA Explained variance ratio ", 
pca.explained_variance_ratio_) 
B = pca.transform(X) 
print("Transformed Data  ", B) 
PCA Components =  [[ 0.70083477 -0.65971771  0.27129904] 
 [-0.57765664 -0.74802961 -0.32674839] 
 [ 0.41850141  0.07227894 -0.90533548]] 
PCA Explained variance  [3.19940358 1.0821583  0.38510479] 
PCA Explained variance ratio  [0.68558648 0.23189106 0.08252245] 
Transformed Data   [[-2.02027019 -0.91840258 -0.27394352] 
 [-0.27129904  0.32674839  0.90533548] 
 [-0.04111706  1.32568625 -0.49078035] 
 [ 2.33268629 -0.73403206 -0.1406116 ]] 

2.2.4 Singular Value Decomposition (SVD) 

SVD decomposes a matrix X into three constituent matrices to remove the redundancy in 
the original features by choosing the highest singular values and their corresponding 
features resulting in dimensionality reduction. The Gauss-Jordan Elimination in chapter one 
showed that the diagonalisation of a matrix reduces it to an easy-to-analyse matrix. The 
Eigendecomposition takes the form A𝑢  = 𝜆 𝑢  where 𝑢  is the eigenvector corresponding to 
the 𝜆i eigenvalue. This can be expressed in diagonalised form as: A𝑈 =Λ𝑈 or A =𝑈Λ𝑈  such 
that Λ is a diagonal matrix containing the eigenvalues on the diagonal elements, and U 
contains the eigenvectors as its columns (Deisenroth, Faisal and Ong, 2019). 

A = 
𝑢 , … 𝑢 ,

⋮ ⋱ ⋮
𝑢 , … 𝑢 ,

 𝜆 … 0
⋮ ⋱ ⋮
0 …  𝜆

𝑢 , … 𝑢 ,

⋮ ⋱ ⋮
𝑢 , … 𝑢 ,

 

Where 𝑢 = [𝑢 , , 𝑢 , , … , 𝑢 , ] 
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The inverse Eigenvectors matrix exists only if the Eigenvectors are linearly independent. This 
is possible only if A is a square matrix. To develop a similar decomposition for non-square 
matrices, SVD starts by converting the input matrix to a special square matrix by multiplying 
it by its transpose. AᵀA matrix has the following properties: 

 Symmetrical, therefore, we can choose its eigenvectors to be orthogonal with 
unit length (orthonormal) to each other. 

 Square, i.e. invertible 

 At least positive semi-definite (Eigenvalues are zero or positive), 

 Both matrices (A and AᵀA) have the same positive Eigenvalues, and 

 Both have the same rank r as A. 

The equation to decompose a matrix X is given by: 𝑋 = 𝑈 S 𝑉  

Where  

 S is an n×n diagonal matrix, and the diagonal values in the S matrix are known as 
the singular values of the original matrix X. 

o The singular values are the square root of the Eigenvalues. The singular 
values are arranged in descending order along the main diagonal in S.  

o It is a diagonal matrix that can be reduced to only 𝑟 important values, 
the rest of the matrix being zero. The choice of the rank is based on 
eliminating linear dependant rows, which is the default matrix rank 
definition and can be any smaller value than n to achieve lossy 
compression (leaving out some non-zero but small Eigenvalues). 

 𝐕 is an orthonormal column matrix; the columns of 𝐕 are called the right 
singular vectors of X 

o Note that we always use V in its transposed form, so the rows of VT are 
orthonormal. 

o It is a matrix that holds important information about the columns of X, 
and the most important information about 𝐕𝐓 is stored in the first row. 

o V is the corresponding unit Eigenvectors to the Eigenvalues squared and 
placed in S. 

 𝐔 is an orthonormal column matrix; the columns of the 𝐔 matrix are called the 
left singular vectors of X; 

o Each of its columns is a unit vector, and the dot product of any two 
columns is 0 (orthogonal). 

o It is a matrix that holds important information about the rows of X, and 
the most important information about 𝑼 is stored in the first column. 
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o It is calculated by using the property US(:,i) = XV(:,i) 
 

For compression, we define the rank for the middle projection: 

𝑋 = 𝑈 S 𝑉  

Where 𝑟 is rank 𝑟 ≤ m and 𝑟 ≤ n, the rank of a matrix is the largest number of columns we 
can choose for which no selected column is a linear combination of another selected 
column. This is to say that such columns are linearly independent. This can also be 
expressed in vectors form as linear combinations of orthonormal basis directions weighted 
by the singular value σ in descending order:  𝑋 = 𝑈S𝑉 = σ u v + σ u v + ⋯ +

σ u v . This is illustrated in Figure 2. 

 

Figure 2: SVD matrix decomposition illustration 

Steps to calculate SVD: 

Given a matrix X: 

Step 1: Compute 𝐴=X𝑇X 

Step 2: Do Eigendecomposition of 𝐴 

Step 3: Calculate the singular values, which are the square root of the Eigenvalues 

1. Sort the singular values in decreasing order; and arrange in S or Ʃ matrix along the 
diagonal. 

Step 4: Calculate the right singular vectors (columns of V) 

1. the corresponding unit Eigenvectors are the right singular vectors of X, stored in V 
Step 5: Find the left singular vectors 𝑈 by using the property US(:,i) = MV(:,i) 
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Example 1: 

Find Singular Value Decomposition (SVD) of a Matrix M ∈ ℝ ×  = −1 0
0 3

 

SVD(M) = U Σ VT 

Step 1: Calculate A = MTM = −1 0
0 3

−1 0
0 3

=  
1 0
0 9

 

Step 2: Find Eigenvalues and Eigenvectors of A = MTM 

|A – 𝜆𝐼| = 0 

1 − 𝜆 0
0 9 − 𝜆

 = 0 

Then arranging by highest Eigenvalue, we have 𝜆 = 9, 𝜆 = 1 

For 𝜆 = 9, the corresponding Eigenvector is: 

1 − 9 0
0 9 − 9

𝑥
𝑥  = 0 

−8 0
0 0

 
𝑥
𝑥  = 0 

Now, reduce this matrix as follows: (check the Gaussian Elimination in chapter one) 

R1←R1÷-8 

1 0
0 0

 
𝑥
𝑥  = 0 

Then 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 1 

Then 𝒗𝟎 =
𝟎
𝟏

 is the Eigenvector corresponding to the Eigenvalue 𝜆 = 9 

For 𝜆 = 1, the corresponding Eigenvector is: 

1 − 1 0
0 9 − 1

𝑥
𝑥  = 0 

0 0
0 8

 
𝑥
𝑥  = 0 

Now, reduce this matrix by swapping the rows 
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0 8
0 0

 
𝑥
𝑥  = 0 

Then, reduce this matrix as follows: 

R1←R1÷-8 

0 1
0 0

 
𝑥
𝑥  = 0 

Then 𝑥 = 1 𝑎𝑛𝑑 𝑥 = 0 

Then 𝒗𝟏 =
𝟏
𝟎

 is the Eigenvector corresponding to the Eigenvalue 𝜆 = 1 

Step 3: Calculate the singular values, which are the square root of the eigenvalues 

𝜎 =  𝜆 = √9 = 3 

𝜎 =  𝜆 = √1 = 1 

This forms your singular values diagonal matrix Σ ∈ ℝ × =  
𝜎 0
0 𝜎

=
3 0
0 1

  

Step 4: Calculate the right singular vectors (columns of V) 

V is the corresponding unit eigenvectors, now called the right singular vectors of 𝑀  

𝑉 ∈ ℝ × =  [𝑣   𝑣 ] =  
0 1
1 0

  

PS VTV = I (V has orthonormal columns: orthogonal and unit bases – of length 1). 

Step 5: Find the left singular vectors 𝑈 by using the property US(:,i) = MV(:,i) 

Which is u0 =  𝑀 . 𝑣 =  
−1 0
0 3

.
0
1

 = 0

0 1
.

0
1

=
0
1

  

And u1 =  𝑀 . 𝑣 =
−1 0
0 3

.
1
0

=  
−1 0
0 3

.
1
0

=  
−1
0

  

U ∈ ℝ × = [𝑢 𝑢 ] =
0 −1
1 0

  

PS UTU = I (U has orthonormal columns: orthogonal and unit bases – of length 1). 

The complete solution is: SVD(M) = U Σ VT = 0 −1
1 0

3 0
0 1

0 1
1 0

  

Example 2: 
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Given 𝑋 =

⎣
⎢
⎢
⎢
⎡
−2 2
−4 −4
4 4
2 −2
0 0 ⎦

⎥
⎥
⎥
⎤

  

To compute SVD: 

Step 1: Compute M=𝑋𝑇𝑋= 40 24
24 40

 

Step 2: do Eigendecomposition of M: 

Eigenvalues: 𝜆 = 64 and 𝜆 = 16 

Eigenvectors: 𝑢
−

√

−
√

, 𝑢
−

√

√

 

Step 3: Find Σ. From the square roots of the eigenvalues on the diagonal 

s1=√64=8, s2=√16=4 

Σ =  
8 0
0 4

  

Step 4: Find V. From the eigenvectors 

𝑉= √
−

√

√ √

 

Step 5: Find 𝑈. For example: 

𝑢 =  × 𝑀 . 𝑣 =  
40 24
24 40

−
√

−
√

= √

−
√

 ,  

𝑢 =  × 𝑀 . 𝑣 =  
40 24
24 40

−
√

√

= √

√

  

𝑈 =  √ √

−
√ √

  

Python example: 
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from numpy import array 
from scipy.linalg import svd, diagsvd 
 
X = array([[1, 2], [3, 4], [5, 6]]) 
print (X) 
U, S, VT = svd(X) 
# to reconstruct  the matrix: 
Sigma = diagsvd(S, X.shape[0], X.shape[1]) 
X_reconstructed = np.dot(U, np.dot(Sigma, VT)) 
print(X_reconstructed) 
np.allclose(X, X_reconstructed) 
X =  [[1 2] 

 [3 4] 

 [5 6]] 

 

U =  [[-0.2298477   0.88346102  0.40824829] 

 [-0.52474482  0.24078249 -0.81649658] 

 [-0.81964194 -0.40189603  0.40824829]] 

 

S =  [9.52551809 0.51430058] 

 

VT =  [[-0.61962948 -0.78489445] 

 [-0.78489445  0.61962948]] 

 

X Reconstructed =  [[1. 2.] 

 [3. 4.] 

 [5. 6.]] Allclose: True 
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2.2.4.1 Data Science with SVD 

This example is credited to (Leskovec, Rajaraman and Ullman, 2014). Given Ratings of five 
movies by seven users. The movies belong to a category or concept, and this information is 
hidden in the observed data. We know that the movies belong to 2 categories: science 
fiction and romance, so we choose r equals 2 to reveal these hidden (latent) features. We 
can do SVD to identify the users’ interest in the concept in general and evaluate the weights 
of ratings by the concept, such that: 

 𝑴𝒏×𝒅=𝑼𝑛×𝒓𝞢𝑟×𝒓 (𝑽𝑟×𝑑)𝑻 

𝑴: 𝑛umber of users (n) x number of movies (d) 

𝑼: 𝑛 users x 𝑟 concepts: connects people to concepts. 

𝞢: the strength of each concept 

𝑽: 𝑑 movies x 𝑟 concepts: relates movies to concepts 

 Matrix Alien Star Wars Casablanca Titanic 

Joe 1 1 1 0 0 

Jim 3 3 3 0 0 

John 4 4 4 0 0 

Jack 5 5 5 0 0 

Jill 0 0 0 4 4 

Jenny 0 0 0 5 5 

Jane 0 0 0 2 2 

 

Doing SVD on this matrix: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

  

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.14 0
0.42 0
0.56 0
0.70 0

0 0.60
0 0.75
0 0.30⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
12.4 0

0 9.5
0.58 0.58 0.58 0 0

0 0 0 0.71 0.71
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         X    =  U          𝜮    VT  

 

Note: Generally, the concepts will not be as clearly delineated as in this hand-crafted 
example. There will be fewer zeros in 𝑼and 𝑽. Check the ch2.ipynb to see actual values 
generated from the sklearn Python package implementation of “TruncatedSVD”. 

We can read various information from the SVD decomposition: 

 VT: the first row of VT says that the first three movies belong to science fiction, 
while the second row of VT tells us that the last two movies belong to the 
romance genre. 

 U: We can tell that Joe, Jim, John, and Jack are interested in science fiction only, 
while Jill, Jenny, and Jane are interested in romance only and do not rate 
science fiction movies at all. 

 𝑺1: the strength of the first concept: sci-fic; 

 𝑿𝑉 : each user’s rating is an average of all five movies, weighted by the first 
concept; 

 ‖𝑿𝑉 ‖: a score by the overall 7 users, weighted by the first concept. 

 𝑆 = ‖𝑿𝑉 ‖, where 𝑺𝒊 is the 𝑖th value along the main diagonal line of 𝑺, and 𝑽𝒊 is 
the 𝑖th column of 𝑽. 

Online SVD Calculators: 

https://atozmath.com/MatrixEv.aspx?q=svd 

https://keisan.casio.com/exec/system/15076953160460 

2.2.4.2 Compression with SVD 

Other applications of SVD (X =  𝑈 S 𝑉 ) is to choose the highest rank-r 
approximation to a given matrix X that is given by Xnxd = AWT, such that A =𝑈 and W = 
S 𝑉 . The choice of small rank can be useful for compression. This happens by setting 
the s=n-r smallest singular values to 0; then we can also eliminate the corresponding s 
columns of U and V. Choosing the lowest singular values to drop minimises the root-mean-
square error between the original matrix X and its reconstructed approximation. The choice 
of r can be made by studying the decay of the singular values. Python notebook ch2.ipynb 
shows an image compression SVD example and how the choice of rank affects the quality of 
the image.  
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2.2.5 Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a generative model that assumes a dataset to be a 
linear mixture of some latent factors such that x = As, where A∈ ℝ ×  is the mixing matrix, 
and s is the source or the independent components. ICA uses information theory to capture 
mutually independent factors in a dataset, unlike PCA, which captures uncorrelated factors. 
ICA estimates p unordered sources that should not be more than the observed mixtures x 
(Lu, Plataniotis and Venetsanopoulos, 2014).    

ICA attempts to find the unmixing matrix by employing non-Gaussianity from the central 
tendency theorem to retrieve the independent components from the mixture: s = A-1x. One 
possible computational set of steps to estimate ICs is as follows: 

Step1: Normalise and Whitening:  

1. Subtract the mean: xnorm=x −�̅� 

2. Remove the correlations by Eigendecomposition to end up with zero covariance 

and 1 variance: xw=(E𝐷 𝐸 )x, Where, D is a diagonal matrix of eigenvalues, 

every diagonal element is an eigenvalue of the covariance matrix, and E is an 

orthogonal matrix of eigenvectors. 
Step 2: Maximise Non-Gaussainty by Negative Entropy 

3. A=(V𝐷 𝐸 ), where V is an unknown rotation matrix, that we need to solve for 

it and A using the eigenvalues and eigenvectors. Solving for two unknown 

iteratively by Lagrange multiplier for the constraints that the dot product of 

transpose of W and itself is approximately equal to 1: 𝐴 𝐴≈1, and the Newton 

iterations by randomly initialising W with any values, and iterate using an 

objective function objFunc that aims to non-Gaussian maximisation such as tanh 

and its derivative dObjFunc as follows: 

4. w_new = ∑ X ×  objFunc(A . X) – ∑  dObjFunc(A . X)  × A  

Step 3: Define the convergence scheme: 

1. A is initialised to a random variable 

2. 𝐴 𝐴≈1 is the basis of orthogonality and indicates the convergence 

3. Once the resulting matrix A is calculated, the dot product of it and the 

whitened xw signal gives the sources s. 

There are other algorithms to perform ICA such as infomax, FastICA, and JADE.  
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Real-World Example:  

ICA is important for Blind Source Separation (BSS) problems. A classical BSS problem is the 
cocktail party problem (CPP), defined as having two microphones in a room in different 
locations, while two people are talking simultaneously. The mixed-time-signals received at 
both microphones are 𝑥 (𝑡) =  𝑎 𝑠 (𝑡) +  𝑎 𝑠 (𝑡)𝑎𝑛𝑑 𝑥 (𝑡) =  𝑎 𝑠 (𝑡) +  𝑎 𝑠 (𝑡), 
such that aij are the weight parameters dependent on the distances between microphone i 
and speaker j collected in matrix A, in this case, it is a 2x2 matrix but could be expanded to n 
microphone and m sources problem. The aim is to estimate s1 and s2 from both equations 
with only  x1(t) and x2(t) being known. Check the Python code ICA_FOBI.ipynb for an audio 
BSS example, followed by an image mixture separation example. 

2.2.6 Linear Discriminant Analysis (LDA) 

LDA is a supervised dimensionality reduction algorithm that works on labelled data to 
discriminate between classes, unlike unsupervised PCA, which diagonalises the covariance 
matrix to make data points independent of each other.  The most straightforward Binary (2 
classes) Linear Discriminant is based on the mean of both classes 𝜇  and their variance 𝑠 , 

creating a metric 𝐽 =  , where k spans the features/columns assuming only two 

features, i spans the classes (assuming two classes), and the discriminate becomes 
identifying the value of k at which the highest value of 𝐽  is found. Then, taking the classes’ 

means as the threshold draws the line that separates both classes 𝑐 = . To generalise 

for multiple features to draw a discriminant line equation, y=wx, we need to solve for w, 
through the following steps: 

1. Calculate a middle point of all n features from the means of both classes as a 

vector, 𝑀 = , … ,  

2. Calculate the covariance matrices of both classes, 𝑆 , 𝑆  and compute their 

average 𝑆 = [𝑆 +  𝑆 ]  

3. Solve for weights vector from the inverse of the average, 𝑤 = 𝑆 𝜇 +

𝜇  

4. Identify the threshold c using the middle point, c=wm 

5. For every new test sample x, solve for y=wx, if  y > c, then x belongs to 𝑐1, 

and when y < c, the sample belongs to 𝑐𝑠. 
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Another method to divide the data into separate classes is to maintain two scatter matrices 
for the input space: the within-class scatter Sw to maximise and the between-class scatter Sb 
to minimise for a dataset X with M instances and C classes. The scatter matrices are 
covariance matrices multiplied by the number of entities (Lu, Plataniotis and 
Venetsanopoulos, 2014).  

The steps to perform LDA using scatter matrices are as follows: 

Step 1: Calculate the scatter matrices for the input space: 

1. 𝑆 = ∑ 𝑥 − �̅� 𝑥 − �̅�  and 𝑆 = ∑ 𝑀 (𝑥 − �̅�)(𝑥 − �̅�) , where �̅� =

∑ 𝑥   , is the  class mean for entities belonging to the class Mc, and �̅� is the 

feature column mean across all classes. The sum of these two scatter matrices is the 
total scatter S  for the dataset.  

Step 2: Estimate the projection matrix into the output space: 

2. The input space scatter-matrices are projected into the output space using projection 
matrix U as follows: 

S =  U S U, and S =  U S U and the Total scatter in the output space: 
S =  U S U 

3. LDA aims to maximise the between-class scatter in the output space S , while 
minimising the within-class scatter in the output space S  by solving for U. This can be 
done by using the trace of the scatter matrices and the inverse if it is singular: 

𝑈 =  argmax 𝑡𝑟(S S ) = argmax 𝑡𝑟((U S U) U S U) 

 It can also be done using any substitutions of S , or by using the determinants: 

𝑈 =  argmax
|S |

|S |
= argmax

|U S U|

|U S U|
 

𝑈 =  argmax U S U, subject to U S U = 1. 

4. This can be solved by Lagrange multiplier:𝜓 =  U S U −  λ(U S U − 1), then 
differentiate with respect to u, and set = 0,  

𝛿𝜓

𝛿𝑢
=  S U −  λS U = 0 →  S U =  λS U 

which is the generalised eigenvalue problem.  

Step 3: Get the highest C-1 eigenvectors to form U: 
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5. The eigenvectors corresponding to the largest C-1 eigenvalues λ form the 

columns of U.  
Step 4: Project the test data into the new LDA output space: 

6. Then data are projected like in PCA as y = U x. 
 

The above approaches build discriminative classifiers by learning to discriminate the classes 
from a training dataset, not how the data points are generated. A generative classifier uses 
probabilistic methods to learn how points are generated in each class, applying Bayes 
Theorem. LDA is implemented in Scikit learn Python packages using its generative model. 
The LDA generative model assumes the class-conditional densities, 𝑓 (𝑥) for class k, are 

Gaussian with a common covariance matrix so that 𝑓 (𝑥) =
( ) / | | / 𝑒

( ) ( ), 

where the Gaussian is described using its mean and standard deviation, or covariance matrix 
Σ. The function includes constant e, M is the number of features, and 𝜇  is means for class k. 
Given 𝑁 as the number of entities in class k, such that  the LDA classifier assumes that 𝜋 =

 is  the maximum likelihood estimates (MLE) of 𝑓 (. ), across all classes, i.e. 𝜋k is the 

probability of class Y being k, P(Y = k). The 𝑓 (𝑥) predictors (for k=1,…,K) all share the same 

covariance matrix 𝛴 =
∑ ∑ ( )( )

 but may have different means �̂� = ∑ . 

The Bayes Theorem: 𝑌 = argmax 𝑃 (𝑌|𝑋) = argmax 𝑃(𝑋|𝑌)𝑃(𝑌),  predicts the class 𝑌 of 

test sample 𝑋. The generative LDA classifier satisfies: 𝑌(𝑥) = argmax
( )

∑ ( )
 . 

LDA can separate multiple classes by training multiple classifiers to separate each pair of 
classes and use voting between the classifiers to identify the class of a test sample, which 
can be considered a basic multilinear model. Instead of using a linear equation, a quadratic 
equation is used in QDA. The Bayesian Probabilistic models of LDA and QDA are 
implemented in Scitkit-learn library, assuming Gaussian densities for 𝑃(𝑋|𝑌), while the 
other generative model, such as Naive Bayes, assumes 𝑃(𝑋|𝑌)  = ∏ 𝑃(𝑋 |𝑌) , such that 
the features are independent conditional on Y. For more about Bayesian generative models, 
read books such as (Sivia and Skilling, 2006), (Downey, 2013). Check the Python code (xxxx) 
for an LDA example compared to PCA. 

2.2.7 Canonical Correlation Analysis (CCA) 

The CCA and the PLS (in the following section) algorithms consider mapping from two paired 
datasets, x ∈ ℝ ×  and y∈ ℝ × . Learning the symmetric relationship between them is 
performed by learning the Linear projections for both by maximising the correlations. 
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Symmetric relationships mean both datasets are different views or representations of the 
same entities. A classic example is audio and video datasets from the same individuals (Lu, 
Plataniotis and Venetsanopoulos, 2014). 

The steps to perform CCA are as follows: 

Step 1: Define the covariance matrix of each dataset and the cross-covariance matrices: 

1. Σ =  ∑ (𝑥 − �̅�)(𝑥 − �̅�) , Σ =  ∑ (𝑦 − 𝑦)(𝑦 − 𝑦)  

Σ =  ∑ (𝑥 − �̅�)(𝑦 − 𝑦) , Σ =  ∑ (𝑦 − 𝑦)(𝑥 − �̅�) , note that Σ =

 Σ  

Step 2: Find The correlations between the projections: 

2. The pth pair of projections (𝑢  , 𝑢  ), 𝑟 = 𝑢 𝑥 , and 𝑠 = 𝑢 𝑦  such 

that coordinate vectors 𝑤  = 𝑢 (𝑥 − �̅�) = 𝑟 , and  𝑧  = 𝑢 (𝑦 − 𝑦) 

=𝑠  has the correlation 𝜌 =
( )( )

 

Step 3: Find the first projection pair 𝒖𝒙𝟏, 𝒖𝒚𝟏  such that 𝝆𝟏 is maximised similar to the 
algorithm presented in the PCA section,  

3. 𝑢 , 𝑢 =  argmax
,

𝑢 Σ 𝑢  ,  subject to 𝑢 Σ 𝑢 = 1, and 𝑢 Σ 𝑢 = 1. 

4. Using Lagrange Multipliers: 𝜓 = 𝑢 Σ 𝑢 − 𝜆 𝑢 Σ 𝑢 − 1 −

𝜇 (𝑢 Σ 𝑢 − 1) 
5. Differentiate with respect to 𝑢  and 𝑢 , and set to 0: 

 = Σ 𝑢 − 𝜆Σ 𝑢 = 0, then multiply 𝑢 on the left 

= Σ 𝑢 − 𝜇Σ 𝑢 = 0, then multiply 𝑢 on the left 

6. We have 𝑢 Σ 𝑢 − 𝜆𝑢 Σ 𝑢 = 0, and 𝑢 Σ 𝑢 − 𝜇𝑢 Σ 𝑢  
7. Since we have 𝑢 Σ 𝑢 = 1, and 𝑢 Σ 𝑢 = 1, then we are 𝜆 = 𝜇 =

𝑢 Σ 𝑢 to maximise.  

8. If Σ  is non-singular, 𝑢 =  𝑢 , then we have: Σ Σ Σ 𝑢 =  𝜆 Σ 𝑢 , 
which is the generalised eigenvalue problem, such that 𝑢 is the Eigenvector 
corresponding to the largest Eigenvalue  

9. If Σ  is non-singular, then we have: Σ Σ Σ Σ 𝑢 =  𝜆 𝑢 , and 
Σ Σ Σ Σ 𝑢 =  𝜆 𝑢   

 
Step 4: Find the following projections  
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10. Each projection p should maximise the correlation 𝜌  by adding the zero correlation 
constraints such as for p=2, w2 and z2 are uncorrelated with w1 and z1, and for later 
steps p, wp and zp are uncorrelated with wq and zq, for 1<= q <= p-1 

Step 5: Assemble the Projection Matrices  

11. Projections matrices Ux ∈ ℝ ×  and Uy ∈ ℝ × columns are the calculated projection 
pairs, respectively. 

12. Make the projections to the dataset as xprojected = 𝑈 x, and yprojected = 𝑈 y. 
  

Check the Python code in CCA_PLS.ipynb for a CCA example compared to PLS. 

2.2.8 Partial Least Squares Analysis (PLS) 

It is like CCA in mapping the symmetric relationship between two paired datasets, but by 
maximising the covariance, not the correlation, and is useful when Σ  and Σ  are not 
singular. In the scikit-learn Python package, this is implemented in the cross decomposition 
module as PLSCanonical. Maximising the covariance between datasets is suitable when 
modelling X as one dataset and Y as another dataset, such that the target is not a single 
value but a vector of several targets as multilabel. PLS is also an acronym for “Projection to 
Latent Structures” since it uses latent variables to identify the association between blocks of 
observed variables. 

The pth pair of projections (𝑢  , 𝑢  ) are the weight vectors that are estimated such that 

coordinate vectors 𝑤  = 𝑢 (𝑥 − �̅�) = 𝑟 , and  𝑧  = 𝑢 (𝑦 − 𝑦) =𝑠  maximise the 

sample covariance between  𝑤 , 𝑧 ,  which are the score vectors,  forming the score 

Matrices W and Z. This is calculated by: 𝑢  , 𝑢 =  argmax
 , ( )( )

. The non-

linear iterative partial least squares (NIPALS) algorithm iteratively finds the dominant 
Eigenvector similar to the power method. By deflating the X, and Y matrices, the algorithm 
finds the subsequent dominant Eigenvector (Lu, Plataniotis and Venetsanopoulos, 2014).  

The steps to perform PLS are as follows: 

Step 1: Repeat Until Convergence:  

1. Initialise Y-score vector 𝑧  with the first row of Y 

2. Calculate the X-weight vectors: 𝑢 = ,  

3. Calculate the X-score vector: w = X 𝑢  

4. Calculate the Y-weight vector: 𝑢 =  
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5. Update Y-score vector z = Y 𝑢  

6. Repeat steps 1:5 until 
   

 
< stopping criteria 𝜂, 𝑢 and 𝑢 are the 

dominant eigenvectors of this round. 

7. Calculate the X loading vector 𝑣 = , coefficients of regressing X on wp forming 

matrix Vx 

8. Calculate the Y-loading vector 𝑣 = , coefficients of regressing Y on zp forming 

matrix Vy 
9. Rank-one deflate both X and Y: 𝑋 ← 𝑋 − 𝑣 w  and 𝑌 ← 𝑌 − 𝑣 z  
10. Repeat steps 1:9 until ‖𝑋‖< stopping criteria 𝜂. 

Step 2: Assemble the weight Matrices 

11. Weight matrices Ux ∈ ℝ ×  and Uy ∈ ℝ × columns are the calculated projections pairs, 
respectively. 

12. Make the projections to the dataset as xprojected = 𝑈 x, and yprojected = 𝑈 y. 

PLS can be used for regression when the relationship between X and Y is asymmetric, and 
considering Y the response (outcome or dependent) on X (the predictor or the independent 
dataset), such that the score vectors {wp} are good predictors of Y. The residual matrices 
(the error terms) are 𝐸 , 𝐸 , such that 𝑋 =  𝑉 W + 𝐸 , and 𝑌 =  𝑉 Z + 𝐸 , assembled in 
matrix E can be used to linearly approximate the relationship between W and Z, such that Z 
= WD + E, and D are the regression coefficients calculated below. PLS for regression 
performs the following steps: 

Step 1: Repeat for p latent factors:  

1. Calculate the X-weight vectors: 𝑢 = ,  

2. Calculate the X-score vector: w = X 𝑢  

3. Calculate the regression coefficient 𝑑 =  

4. Calculate the X loading vector 𝑣 = , coefficients of regressing X on wp forming 

matrix Vx 
5. Rank-one deflate both X and Y: 𝑋 ← 𝑋 − 𝑣 w  and 𝑌 ← 𝑌 − 𝑑 w  

 

Step 2: Assemble the weight Matrix, loadings, and regression coefficients 

6. Weight matrices Ux ∈ ℝ ×  columns are the calculated weights 𝑢 , the 𝑑  are the 
diagonal elements of Matrix D∈ ℝ × , and the loading Matrix V columns 𝑣 . 

PLS can also be applied as a supervised method by encoding Y as the class memberships. 
This will be closely related to Fisher Discriminant Analysis (Binary LDA).  
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2.2.9 Factor Analysis 

 

The latent factors are latent variables that are not measured, but they are sometimes 
planned in the design of the measured dataset or reconstructed from the dataset after 
collection by grouping variables by their correlations. A group of observed variables will 
have a high correlation among themselves and a low correlation with other observed 
variables in other groups, such that each group will imply a different latent factor. The 
principal components capture the highest variance in the dataset in the first component and 
decreasing-order of variance in the following components. The main objective is to project a 
high-dimensional dataset into a smaller dimension model for visualisation or compression 
reasons. The PCA components are not interpretable as data objects themselves. The factors 
are interpretable data that cannot be measured directly in one variable, and several 
observed variables together represent one or more latent factor(s) (Brown, 2006). 

Each measured indicator xi contributes to the factors being measured ηj with loading or 
weight λij, forming the general equation: 

xi = λi1η1 + λi2η2 + . . . + λimηm + εi 

xi = εi + ∑  λ η   

A single equation that relates the observed variables x to the latent variables/factors η and 
the unique variance is: x = W xη +  

That can be captured in matrix form as Σ =  W ΨW + Θ , where Σ ∈ ℝ ×  is the 
symmetric correlation matrix of d indicators X∈ ℝ , Wx ∈ ℝ ×  is the factor loadings matrix 
containing m λ ∈ ℝ , Ψ∈ ℝ ×  is the symmetric correlation matrix of the factor 
correlations, and Θε ∈ ℝ ×  is the diagonal matrix of unique variances ε. 

Various algorithms can estimate the factors and their loading. The most predominantly used 
are maximum likelihood (ML is most suitable to normally distributed datasets) and principal 
factors (PF makes no data distribution assumptions). Other methods include but are not 
limited to: weighted least squares, unweights least squares, generalised least squares, 
imaging analysis, minimum residual analysis, and alpha factoring (Brown, 2006).  

The diagonalisation of the covariance or correlation matrix always calculates all the 
components at once. Also, the NIPALS method (Non-linear Iterative Partial Least Squares) 
explained in the previous section, calculates the components stepwise and is much faster 
than diagonalisation of the covariance matrix if only the first few eigenvalues are desired. 
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Also, Probabilistic PCA (PPCA) also estimates W and Ψ iteratively, using the 
Expectation.Maximisation (EM) algorithm (Burges, 2009). 

Finding common factors in a dataset is often conducted in the exploratory model, in which 
the Exploratory Factor Analysis (EFA) method estimate both the number of factors and the 
loadings. EFA is like PCA, which is simpler to compute, accounting for the dataset’s variance. 
EFA differ in considering the unique variance εi and explains the correlations among the 
observed variables while accounting for measurement errors. EFA can also be used to 
reconstruct the intercorrelations between the measured variables and a small set of latent 
factors.  

Real-Life Application: a single factor of depression cannot be measured directly. Observed 
indicators, for example, can be scores for hopelessness, feelings of worthlessness/guilt, 
psychomotor retardation, and sleep disturbance. This four-dimensional dataset X can 
measure how they contribute to the depression latent factor η  as follows: 

x1 = λ11*η  + 1 

x2 = λ21*η + 2 

x3 = λ31*η + 3 

x4 = λ41*η + 4 

Check the Python code FA.ipynb for another psychometric dataset FA example. 

2.2.10 Non-negative matrix factorisation (NMF) 

NMF extracts a set of sparse meaningful factors from dataset X of non-negative values. It is 
a probabilistic model suitable for high-dimensional data. X∈ ℝ ×  is decomposed into W∈

ℝ × , and H ∈ ℝ ×  matrices with reduced dimensionality to rank r approximation. Matrix 
W columns contain the basis features; basis features are persistent features in all the n data 
points. Matrix H columns explain wherein X (coordinates) these bases are found and how 
important they are to help reconstruct the dataset. In facial images X dataset of n images 
and d pixels, the basis might be noses, eyes, hair, moustache, and other facial features. In 
text dataset X of n document and d words, the basis W can be topics that are defined to 
contain specific words, and H can be the importance of a word in the document. The rank r 
optimisation works by: argmin

∈ℝ × , ∈ℝ ×  

‖𝑋 − 𝑊𝐻‖  subject to W ≥ 0 and H ≥ 0. The partial 

derivatives are: 

∆ 𝐹 =  𝑊𝐻𝐻  −  𝑋𝐻  ≥ 0, such that 𝑊 ∘ ∆ 𝐹 =  0, and W ≥ 0 
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∆ 𝐹 =  𝑊 𝑊𝐻 −  𝑊 𝑋 ≥ 0, such that 𝐻 ∘ ∆ 𝐹 =  0,  and H ≥ 0 

where ∘ is the component-wise product of two matrices. 

The following generally are the steps performed to estimate W and H alternatively, such as 
the Hierarchical alternating least squares (HALS) algorithm: 

Step 1: Initialize W and H randomly 

Step 2: Repeat For 𝓵 = 1, 2, . . . , r: 

1. Update W(:, ℓ) such that the objective function decreases: W(: , ℓ) ←

argmin
(:,ℓ)  

‖𝑋 − ∑ 𝑊(: , 𝑘)𝐻(𝑘, : ) −  𝑊(: , ℓ)𝐻(ℓ, : ) ℓ ‖ , 

2. Update H accordingly to continue decreasing the objective function while 

maintaining the constraints:  

3. Convergence is checked by: 𝐶(𝑊, 𝐻) =  𝐶 (𝑊) + 𝐶 (𝐻), where  

𝐶 (𝑊) =  ‖min(𝑊, 0)‖ + ‖min(∆ 𝐹, 0)‖ + ‖𝑊 ∘ ∆ 𝐹‖𝑓 for all constraints, and 

𝐶 (𝐻) =  ‖min(𝐻, 0)‖ + ‖min(∆ 𝐹, 0)‖ + ‖𝐻 ∘ ∆ 𝐹‖𝑓  

Some regularisation is required to guarantee convergence. Detailed problems and research 
outcomes on how to avoid them can be found in (Suykens et al., 2014). 

Check the Python code NMF.ipynb for text mining NMF example compared with 
MiniBatchNMF and Latent Dirichlet Allocation (LDA) as implemented by scikit-learn. 

2.2.11 Other Factorisations 

The literature presents a plethora of algorithms that serve different objectives and 
constraints, and researchers will keep advancing the performance by addressing existing 
problems. Some of the factorisation techniques that we did not discuss are as follows: 

 LU factorization: A = LU; 
o where L is the lower triangle and U is the upper triangle of matrix A.  In the 

Gaussian Elimination algorithm used in chapter one to solve a system of 
equations Ax = b, we applied elementary row operations (ERO) to reduce a 
matrix to an upper triangular matrix. This is composed of a forward 
substitution Lz = b, and backward substitution, Ux = b. 

 LU factorization with row pivoting: PA = LU; 

 The Cholesky factorisation, A = LLT 

 The QR factorisation, A ∈ ℝ × = QR; 
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where Q ∈ ℝ ×  has the special property of being an orthonormal matrix with respect to 
its columns, such that QTQ = I and R ∈ ℝ ×  is an upper triangular matrix. If m > n, a 
reduced QR decomposition – or thin QR factorisation – can be 
computed, i.e. Q ∈ ℝ ×  and R ∈ ℝ × . 

 When a matrix is indefinite symmetric, there is a factorisation called the LDLT 
(pronounce as L D L transpose) factorisation: A = LDLT ; 
o where L is a unit lower triangular and D is diagonal. You may want to see if 

you can modify the derivation of the Cholesky factorisation to yield an 
algorithm for the LDLT factorisation (Geijn and Quintana-Ort´, 2008). 

 Dictionary Learning has many algorithms and implemented in 
sklearn.decomposition.DictionaryLearning.  

2.2.12 Comparing Methods 

You can notice that eigendecomposition Av = 𝜆𝐵𝑣 is the fundamental decomposition 
technique that the most discussed algorithm reduces to, after considering the problem 
objectives and constraints.  Table 1 is adopted from (Lu, Plataniotis and Venetsanopoulos, 
2014) with the extra methods added and a summary of objectives and limitations of 
methods. 

Table 1: Comparison of Linear Subspace Learning Methods 

MethodMaximise A B v Objective Limitations 

PCA Total scatter 
(variation) 

ST I u1 only for the 
Gaussian data 
representation 
method. 

Closed Formula 
Exists. 

First and second-order statistics: 
mean and std, ignoring correlations 
of higher statistics. 

Assumes linear dataset. 

Hard to interpret the PCs' relation to 
data – not suitable for feature 
extraction. 

SVD Covariance 
matrix 

ATA U V Relates to data 
well. 

Singular values are 
stable for all 
matrices. 

Useful for 
compression. 
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LDA Between-class to 
within-class 
scatter ratio 

SB SW u1 Supervised Data 
Disciminitive 
method. 

Suffer from high variance in SSS. 

CCA Correlation 0 Σ

Σ 0

Σ 0
0 Σ

u
u  Correlation 

between two 
symmetric datasets 

Require the inverse of Σ , Σ , 
which can be solved by regularisation 
or Cholesky decomposition. 

Suffer from high variance in SSS. 

PLS Covariance 0 Σ

Σ 0

𝐼 0
0 I

 
u
u  Covariance 

between 
asymmetric 
Datasets 

Work well when 
Σ , Σ  are 
singular. 

Work well for a small number of 
latent variables. 

FA PLS and other 
variations can 
perform FA 

0 Σ

Σ 0

𝐼 0
0 I

 
u
u  Map Directly to 

meaningful 
unobserved data 

 

ICA Iterative 
Algorithm 

   Works for non-
Gaussian data. 

Higher-order 
statistics: kurtosis 
or negentropy.  

Iterative methods. 

ICs are not ordered, and the actual 
number can not be estimated. 

NMF Iterative 
Algorithm 

   Sparse Meaningful 
features in high-
dimensional 
datasets 

Probabilistic model. 

 

Since the Eigendecomposition is at the heart of dimensionality reduction methods, 
approximating this decomposition for a submatrix of the given dataset can speed up the 
training. The generalised Nystr�̈�m method does this by a quadrature method that solves an 
integral equation by replacing the integral with a representative weighted sum. For a 
dataset X ∈ ℝ , the density p(x), is represented by the integral form, which reduces to a 
quadrature rule as follows: 

∫ 𝑘(𝑥, 𝑦)𝑢(𝑦)𝑝(𝑦)𝑑𝑦 = 𝜆𝑢(𝑥) ≈ ∑ 𝑘(𝑥, 𝑥 )𝑢(𝑥 )  
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When the approximate equation on the right-hand side is applied to the sample points, it 
becomes a matrix equation  𝑘 𝑢 = 𝑚𝜆𝑢 , where u is (ui ≡ u(xi)) is the eigenfunction for 
some chosen m points such that the rank r of X (number of linearly independent columns) is 
≫ 𝑚, and 𝑘  means indices mm and that K ∈ Mm is a submatrix of X, (with components Kij 
≡ k(xi,xj). When m=r, then the approximation is exact. The eigenvalues 𝜆  approximately 
scale with the number of points chosen m. The full steps of solving the Nystr�̈�m method 
exact and approximate variant (dropping the requirement that eigenvectors be orthogonal 
to each other) are explained in (Burges, 2009). The point to emphasise is that the 
projections of a mapped test point along principal components in a kernel feature space 
(the submatrix K) are equal to the expression for the approximate eigenfunctions evaluated 
at the new point, computed according to the approximate quadrature rule equation 
mentioned above. This mapping to a submatrix approximates the full eigenfunctions at all 
points. The main objective of the following section is to find Manifolds of lower dimensions 
that approximate the points in a dataset in the higher dimension. 

2.3 Manifolds 

Data in high dimensional spaces tend to be sparse, with most vectors containing zeros. This 
makes most vectors orthogonal to each other and equidistant, which means there is no 
structure to learn. These properties disable distance-measure-based dimensionality 
reduction algorithms to identify the linear subspace efficiently. Consequently, any 
regression or classification algorithm estimating the decision line or hyperplane in a higher 
dimension will fail to draw a line between equidistant points. Learning a Manifold M that 
contains the data points of the given dataset represented in a lower dimension than the 
input higher dimension space is a non-linear unsupervised dimensionality reduction 
approach that reduces the computation cost and increases the accuracy of the ML 
algorithm. In Natural Language Processing (NLP), words must be numerically encoded. If we 
encode all words in a dictionary, this might be sparse, and not all words will be used in a 
specific document or dataset. The word embeddings (manifold) from a given corpus can be 
learned using deep learning layers and can be constructed by statistical methods, 
maintaining closer codes for semantically close words.  

This learning of the points' relationships to their neighbours in the manifold does not need 
to be using a similar relationship, equation or geometric shape. This would create a grid of 
some sort of basis along each dimension, creating a dimensionality curse. On the contrary, 
the manifold can be learned using several relationships in different neighbourhoods 
embedded in the manifold. For example, instead of learning the same unified principal 
components of a dataset and projecting the dataset onto the initial principal components 
for reduction, a manifold learning algorithm would partition the data into closer 



CHAPTER 2  

39 

neighbourhoods. Then, the algorithm would learn the principal components for each 
neighbourhood independently and project the relevant points onto their initial PCs that are 
different from the other neighbourhood, then form a manifold of all projections. Similar to 
the power method in estimating the Eigenvector, starting from random embedding and 
optimising it is a popular manifold learning approach. Check Python notebook 
Manifolds.ipynb for a comprehensive example using MNIST dataset comparing manifolds 
created by linear unsupervised PCA, supervised LDA and QDA, and manifold learning 
algorithms, MDS, Isomap, LLE, t-SNE, and Spectral Embedding. 

2.3.1 Multidimensional Scaling (MDS) 

MDS searches for a measure of dissimilarity between each pair of data points in X ∈
ℝ ×  to map them to a low dimensional Euclidean Space, forming a squared distances 
matrix to be used for visualisation or dimensionality reduction and feature extraction. This 
can be performed using similar steps to the following: 

Step 1: Assign some points to coordinates in n-dimensional space.  

1. Choose N points to be 2D or 3D to be able to visualise and easily modelled. The 
coordinates’ orientation is arbitrary and depends on the features’ nature. For example,  
two coordinate axes representing north/south and east/west are suitable for modelling 
a dataset containing map locations. 

Step 2: Calculate the symmetric similarity matrix A using a suitable distance measure for 
all pairs of points.  

2. The Euclidean distance is the Euclidean norm ‖. ‖ that is based on the Pythagorean 
theorem becomes more complicated for n-dimensional space (see 
https://hlab.stanford.edu/brian/euclidean_distance_in.html). For two pairs of data 

points x, y ∈ ℝ: dist(x, y) = x-y, for x, y ∈ ℝ , dist(x, y) = 𝑥 − 𝑦 , and for x, y ∈ ℝ , 

dist(x, y)= ∑ (𝑥 + 𝑦 ). This results in the similarity matrix A whose ij-th element is 

𝑥 − 𝑥 for some 𝑥 , 𝑥  ∈ ℝ . Other distance metrics can be used. Also, non-metric 

scaling in ordinal MDS can be performed by using a given rank ordering of the original 
data points in this matrix that is minimised using a suitable cost function of the 
difference between the embedded squared distances and some monotonic function of 
the dissimilarities. 

Step 3: Find the lower-dimensional embedding: 
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3. The Schoenberg theorem states that the class of symmetric matrices A ∈ ℝ ×  such 

that Aij ≥ 0 and Aii = 0 ∀i, j. Then �̅� ≡ −PAP is posi ve semi-definite if and only if A is a 

distance matrix (with embedding space ℝ  for some d). Given that A is a distance 

matrix, the minimal embedding dimension d is the rank of �̅�, and the embedding 

vectors are any set of Gram vectors of �̅�, scaled by a factor of 
√

 .  

a. Defining the projection matrix 𝑃  ≡ (1 – e𝑐 ), for any c∈Rm such that 𝑒 c = 1, then 
for any conditionally negative definite (CND) matrix A, the matrix −𝑃 𝐴𝑃  is 
positive semi-definite (and hence a dot product matrix). We can map a distance 
matrix A to a dot product matrix K by using 𝑃  in the above manner for any set of 

numbers ci that sum to unity. Again, this reduces to Eigendecomposition �̅�𝐸 =

 𝐸𝛬, where �̅� is the positive semi-definite matrix that we need to solve for, E be 
the matrix of column eigenvectors e(α) (labelled by α), ordered by eigenvalue λα, so 
that the first column is the principal Eigenvector and Λ is the diagonal matrix of 

eigenvalues. Defining the matrix 𝐸 ≡  𝐸√𝛬, we see that the Gram vectors are just 

the rows of 𝐸. 

b. If �̅� ∈ ℝ ×  has rank r ≤ n, then the final n − r columns of 𝐸 will be zero, and we 
have directly found the r-dimensional embedding vectors that we are looking for. 

If �̅� ∈ ℝ ×  is full rank, but the last n − p eigenvalues are much smaller than the 
first p, then it’s reasonable to approximate the ith Gram vector by its first p 

components 𝜆 �̃�
( ) , α = 1, …, p, and we have found a low dimensional 

approximation. MDS, Laplacian eigenmaps, and spectral clustering perform this 
latter approach of removing the last few components. The unexplained squared 
residuals measure the quality of the approximation. Thus the fraction of the 

“unexplained residuals” is ∑
∑

, in analogy to the fraction of 

“unexplained variance” in PCA. 
Step 4: Compare the similarity matrix with the original input matrix by evaluating the 
stress function.  

4. Stress is a goodness-of-fit measure based on differences between predicted and actual 
distances. In the original MDS paper (Kruskal, 1964), it was mentioned that fits close to 
zero are excellent, while anything over 0.2 should be considered “poor”. More recent 
authors suggest evaluating stress based on the quality of the distance matrix and how 
many objects are in that matrix. 

Step 5: Adjust coordinates, if necessary, to minimise stress by repeating the above steps.   
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The complexity of MDS is reduced by using a Landmark MDS algorithm (Borg, Groenen and 
Mair, 2013). 

2.3.2 Isometric Feature Map (Isomap) 

MDS maps the dataset to a lower-dimensional embedding such that the data points are 
isotropically represented in the lower space (maintaining equivalent distances) without 
modelling the underlying manifold. Isomap and Locally Linear Embedding are methods to 
model the lower dimensional manifold without keeping the equivalent distances constraint. 
To preserve the non-linear structures in the dataset, Isomap assumes that the data points lie 
on a curve and not a straight line, and instead of measuring the dissimilarity matrix between 
data points, it measures the distance along the curve between the two points. It accounts 
only for large distances along this curve, even if the two points are close in ℝ . The basic 
idea is to construct a graph whose nodes are the data points, where a pair of nodes are 
adjacent only if the two points are close in ℝ , and then to approximate the geodesic 
distance along the manifold between any two points as the shortest path in the graph, 
computed using the Floyd algorithm or the faster Dijkstra’s algorithm with Fibonacci heap 
(Qu and Cai, 2017); and finally to use MDS to extract the low dimensional representation (as 

vectors in ℝ , 𝑑 ≪ 𝑑) from the resulting matrix of squared distances. Isomap does not 

provide a direct mapping function: Ι: ℝ → ℝ . 

2.3.3 Locally Linear Embedding (LLE)  

LLE models the manifold by treating it as a union of linear patches, in analogy to using 
coordinate charts to parameterise a manifold in differential geometry. Suppose X ∈ ℝ ×  

with each point xi ∈ℝ  has a small number of close neighbours indexed by the set N(i) up to 

n neighbours, and let yi ∈ℝ  be the low-dimensional representation of xi. The idea is to 
express each xi as a linear combination of its neighbours and then construct the yi so that 
they can be expressed as the same linear combination of their corresponding neighbours 
(Ghojogh et al., 2020). Similar steps to the following can achieve this:  

Step 1: Find the W’s ∈ ℝ ×  that minimises the sum of the reconstruction errors  

1. The reconstruction error: 𝐸  ≡  𝑥  − ∑ 𝑊 ,∈ ( ) 𝑥  that is invariant of global 

translation, which creates the constraint: ∑ 𝑊 ,∈ ( ) = 1 ∀𝑖. It should also be invariant 

of data scaling, rotation, and/or reflection. 
2. This is achieved by minimising the following objective function: 
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𝐹 ≡  𝐹 ≡
1

2
𝑥  − 𝑊 ,

∈ ( )

𝑥 − 𝜆 ( 𝑊 ,

∈ ( )

− 1)  

3. Differentiate each 𝐹  with respect to 𝑊 ,  , and require that 𝑊 , vanishes, and set to 

zero. 

Step 2: Find a set of eigenvectors yi ∈ ℝ  

4. Perform Eigendecomposition of the product of two sparse matrices (1 −  𝑊) (1 −

 𝑊) ∈ ℝ  with the smallest eigenvalues guarantees that the y is zero mean (since they 
are orthogonal to e).  

5. This is achieved by minimising the following objective function: 

𝐹 =
1

2
𝑦  − 𝑊 , 𝑦 −

1

2
𝜆 (

1

𝑚
𝑌 𝑌 − 𝛿 )  

6. Differentiate each 𝐹 with respect to Ykδ and choosing λαβ = λαδαβ ≡ Λαβ gives the matrix 
equation: (1 −  𝑊) (1 −  𝑊)𝑌 =  𝑌Λ 

 

LLE tend to create a dense manifold in the centre, with various emerging rays. This is 
justified by the LLEs approach to learning the multilinear function from a set of simpler 
linear functions, making it suitable for simple structures in smaller datasets.  

2.3.4 t-distributed Stochastic Neighbor Embeddings 
(t-SNE) 

t-SNE represents a dataset as a t-distribution or normal distribution of smaller sizes. It is 
almost like a neural network being trained using a stochastic gradient descent algorithm to 
minimise the entropy metric. It is an unsupervised approach that clusters that data points 
into local groups of neighbourhoods and focuses on learning about their local structures 
than unfolding them. It is an efficient manifold learning algorithm for multi-scale datasets 
with complex structures and multiple manifolds. However, it is computationally expensive 
compared to the other manifold learning algorithms.  

2.3.5 Spectral Graph decomposition: Spectral 
Clustering 

A simple mapping from each data point in a dataset to a node in an undirected graph G, and 
apply minimum spanning tree or nearest neighbour algorithm to fill the adjacency matrix 
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Wij, with a similarity measure between node i and node j. The normalised Laplacian matrix 

for any weighted, undirected graph is defined by 𝐿 ≡  𝐷 𝐿𝐷 , where Lij ≡ Dij − Wij and Dij 
≡ δij(∑ W ). L is positive semi-definite, and so is the normalised Laplacian. The spectral 
Graph theory states that the graph spectrum properties defined by the eigenvalues of its 
Laplacian, characterise the global graph properties as follows: 

 A complete graph (that is, one for which every node is adjacent to every other node) 

has a single zero eigenvalue, and all other eigenvalues are equal to .  

 If G is connected but not complete, its smallest non-zero Eigenvalue is bounded 
above by unity. 

 The number of zero Eigenvalues is equal to the number of connected components in 
the graph, and in fact, the spectrum of a graph is the union of the spectra of its 
connected components. 

 The sum of the eigenvalues is bounded above by m, with equality if G has no 
isolated nodes.  

 
In light of these results, it seems reasonable to expect that global properties of the data 

— how it clusters or what dimension manifold it lies on — might be captured by properties 
of the Laplacian.  Both Laplacian Eigenmaps and Spectral Clustering manifold learning 
methods apply spectral graph theory to model the lower-dimensional manifold a dataset 
lives in. Clustering generally reduces the dimensionality of the number of data points to the 
number of clusters of similar structural features at its largest scale. Partitioning a graph into 
two disjoint clusters of nodes requires removing arcs such that the cut is defined as the sum 
of removed arcs weights. The minimum cut implies the maximum dissimilarity between the 
clusters. Each node is labelled by zi = 1 for nodes in one cluster and zi = −1 for nodes in the 

other cluster. The solution to the normalised min-cut problem is given by:min  such that 

yi ∈ {1, −𝑏} and 𝑦 𝐷𝑒 = 0, where y ≡ (e + z) + b(e − z), and b is a constant that depends on 
the partition.    The following steps are generally followed: 

Step 1: Weighted Graph Construction.  

1. Transform the raw input data into graph representation using affinity (adjacency) 
matrix representation A. 

Step 2: Graph Laplacian Construction.  

2. Unnormalised Graph Laplacian is constructed as L = D - A for and normalised one as 

𝐿 ≡  𝐷 (𝐷 − 𝐴)𝐷  
 Step 3: Partial Eigenvalue Decomposition.  



CHAPTER 2 

44 

3. Eigenvalue decomposition is done on graph Laplacian: Ly = λDy 
4. The clustering is achieved by thresholding a single eigenvector yi so that the nodes are 

split into two disjoint sets. The dimension reduction is achieved by treating the element 
yi as the first component of a reduced dimension representation of sample xi. 
Otherwise, a simple clustering algorithm such as K-means can be applied to the 
reduced dimensionality dataset and is observed to perform much better than on the 
full dataset.  

2.4 Mapping to the Higher Dimensions 

The estimated decision line/hyperplane function needs to shatter the dataset's N points, i.e. 
the dataset is separable by the classifier. Figure 3a) illustrates the classifications of N=3 
points ∈ ℝ  classified into blue (1) and white (-1) classes. All possible assignments of labels 
(all random datasets that can be obtained) are 23=8 different possible datasets. The figure 
shows the estimated decision line for all possible datasets as a set of functions such as f(x, 
w) to separate the classes. In ℝ  it is possible to find three points that this set of functions 
can shatter, but it is not possible to find four. This is measured by the Vapnik Chervonenkis 
(VC) dimension as defined below. The set of oriented lines in ℝ  is three. Figure 3b) shows 
how a given set of N=4 points ∈ ℝ  are not shattered by the function f(w, x) = sine (wx), 
which generally has an infinite VC dimension for being able to shatter a subset of the set {2-

m| m ∈ ℕ}. This is because these points are equally spaced and labelled in this order. 
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Figure 3a) Three points in ℝ2that shattered by decision lines function.b) Four points that cannot be 
shattered by {sin(wx)}, despite infinite VC dimension by the function set. 

2.4.1 Support Vector Machine (SVM) 

SVM estimates the decision line using a convex quadratic programming algorithm. Linear 
programming minimises or maximises a linear function subject to defined constraints, such 
as solving for minimum weights to satisfy the classification or regression of a given dataset, 
given regularisation constraints and others. A quadratic programming optimisation problem 
is a form of non-linear programming involving a quadratic convex objective function, and 
the points that satisfy the required constraints also form a convex set. Any linear constraint 
defines a convex set, and a set of N simultaneous linear constraints defines the intersection 
of N convex sets, which is also a convex set. For a labelled dataset {xi, yi} i from 1 to N, y  ∈ 
{1, -1}, and xi ∈  ℝ , the optimisation aims to find the weights/parameters for the separating 
hyperplane that separates the positive classes from the negative classes. For the linearly 
separable dataset, a possible set of steps are as follows: 

a) 

 

b) 
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Figure 4: Maximum-margin hyperplane and margin for an SVM trained on two classes with x ∈  ℝ . 
Samples on margins are called support vectors.(Larhmam, 2018) 

Step 1: the geometric preliminaries of the algorithm to identify the optimisation 
requirements: 

1. Generally, any data point x which lies on the hyperplane satisfies wx + b = 0, where 

w is normal to the hyperplane, | |

‖ ‖
 is the perpendicular distance from the 

hyperplane to the origin, and ‖𝑤‖ is the Euclidean norm of w. But in SVM, we need 
to find the hyperplane that maximises the margin between the closest points from 
both classes. Therefore, no x points should fall on the separating hyperplane. 

2. To achieve this, we need to identify two hyperplanes, each one passes through the 
support vectors (points x closest to the hyperplane from both directions). Therefore, 
all data points support the following constraints: 

a. wxi + b ≥ +1 for yi = +1, these points lie on the hyperplane H1: wxi + b = 1 

with normal w, and perpendicular distance from the origin = | |

‖ ‖
 

b. wxi + b ≤ -1 for yi = -1, these points lie on the hyperplane H2: wxi + b = -1 

with normal w, and perpendicular distance from the origin = | |

‖ ‖
 

3. Let d+ (d-) be the shortest distance from the separating hyperplane to the closest 
positive (negative) example, such that the margin of the separating hyperplane is 
equal to d+ + d-.  No data points fall between H1 and H2. 

4. To maximise the margin between H1 and H2 hyperplanes, we need to minimise 
‖𝑤‖  subject to the combined constraints above as: yi (wxi + b) - 1 ≥ 0 ∀𝑖, such that 

d+ = d- = 
‖ ‖

, and the margin between H1 and H2 = 
‖ ‖

. 

Step 2: Apply the Lagrangian optimisation formulation 



CHAPTER 2  

47 

5. The Primal Lagrangian equation adds a Lagrange constant for every data point, 
checking if it is a support vector α >  0, or not α = 0 if it lies on one of the 

hyperplanes. The equation becomes: 𝐿 = ‖𝑤‖ − ∑ α y  (x . w +  b) +

∑ α   
6. We have two sets of constraints forming a Wolfe dual problem: 

a. Minimise LP with respect to w and b, subject to the constraint that the 
derivatives of LP with respect to all the α  vanish, all subject to the 
constraints α  ≥ 0.:  

b. Maximise LP with respect to α , subject to the constraints that the gradient 
of LP with respect to w and b vanish, and subject also to the constraints that 

the α  ≥ 0: 𝑤 = ∑ α y  x  
c. A mild constraint to make b=0, will make all hyperplanes pass through the 

origin and reduce the degree of freedom by one: ∑ α y = 0 

d. Now the Dual Lagrangian equation is: 𝐿 = ∑ α − ∑ α α y y  x . x,  

subject to the mild constraint in 6.c. by adding an extra Lagrange constant 𝜆.  
e. We can use the Hessian Hij = yiyjxi . xj , to formulate the Dual Lagrangian 

equation is: 𝐿 = ∑ α − ∑ α H α, − 𝜆 ∑ α y   

7. Differentiate with respect to w and b: 

a. = (Hα) + 𝜆y = 1 ∀𝑖 = 1, … l , one for each Lagrangian constraint. 

b. = w − ∑ α y x = 0 for v=1, …d 

c. = − ∑ α y = 0  

Toy examples of the linearly separable data are “AND”, and “OR” are shown in Figure 5. The 
“XOR” dataset is not linearly separable. One solution requires two separation 1-D lines 
processed in 2 layers, and one class spans two areas. Another solution presented in Figure 6 
is to map the dataset to a higher dimension, in which it will be separable linearly; for 
example, a 2-D plane separates the “XOR” dataset after mapping it to ℝ  using the following 
mapping function: 

Φ(
x
x  ) =  

x
x

x x
, such that: 

Φ(0, 0 ) = (0, 0, 0) 

Φ(0, 1 ) = (0, 1, 0) 

Φ(1, 0 ) = (1, 0, 0) 
Φ(1, 1 ) = (1, 1, 1) 
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Figure 5: Linearly Separable toy examples in the AND and OR functions. The XOR function is not linearly 
separable and requires 2 1-D lines processed in 2 Layers 

 

Figure 6: Mapping the XOR dataset to a higher dimension here ℝ , enable it to be linearly separable by  2-D 
plane as shown  

2.4.2 Kernel Trick 

The following concepts need to be understood first about the measure of data separability 
given classifier functions in order to understand the non-linearly separable dataset: VC 
Dimension, and Hilbert Spaces, in which a non-linear dataset in the low dimension can be 
separable in the higher dimension. 

The Vapnik Chervonenkis (VC) dimension is a non-negative integer property that measures 
the ML algorithm flexibility to learn a decision line for a large set of points of any possible 
labelling. The ML algorithm produces a set of functions H= {f(w)} (w is the estimated vector 
of weights/parameters for different datasets and not a specific value for w that makes a 
function a particular function for a particular dataset). It can be defined for various classes 
of function f (different algorithms such as different complexity, higher polynomial or radial 
basis functions). Here we will only consider functions that correspond to the two-class 
pattern recognition case so that f(x, w) ∈ {1, -1} ∀𝑥, 𝑤. A given set C of N points labelled in 
all possible 2N ways are said to be shattered by the ML algorithm when for each labelling, a 
member of the set {f(w)} can be found that correctly assigns those labels. The intersection of 
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sets H and C is defined as the following set family: 𝐻 ∩ 𝐶 = {ℎ ∩ 𝐶: ℎ ∩ 𝐻}. C is shattered by 
H, if 𝐻 ∩ 𝐶  contains all subsets of C: |𝐻 ∩ 𝐶| = 2| |. The VC dimension for the set of 
functions H is defined as the largest cardinality of sets (training points) that can be shattered 
by it (correctly classified without errors). VC dimension is ∞ if it is too large. Note that if the 
VC dimension is h, then there exists at least one set of h points that can be shattered, but in 
general, it will not be true that every set of h points can be shattered (Burges, 1998). The VC 
dimension of a finite classification model, which can return at most 2d different classifiers, is 
at most d, depending on the structure of the model (chosen class of the function). 
Generally, some bounds are proven on the different dimensionalities and classifiers: 

 A constant classifier (with no parameters), its VC dimension is 0 since it cannot 
shatter even a single point.  

 A single-parametric threshold classifier on real numbers; i.e., for a certain 
threshold w, the classifier f(w) returns one if the input number is larger than w  
and 0; otherwise, the VC dimension of f(w) is one because: it can shatter a single 
point, but it cannot shatter any set of two points. 

 A single-parametric interval classifier on real numbers; i.e., for a certain 
threshold w, the classifier f(w) returns one if the input number is within the 
interval w  and 0; otherwise, then the VC dimension of f(w) is two because: it 
can shatter some sets of two points, but it cannot shatter any set of three 
points. 

 In a line classifier model (such as regression and perceptron), for each pair of 
distinct points, there is one line that contains both of them, lines that contain 
only one of them, and lines that contain none of them, so every set of size two 
is shattered. The line should separate positive data points from negative data 
points. There exist sets of 3 points that can indeed be shattered using this 
model (any 3 points that are not collinear can be shattered). However, no set of 
4 points can be shattered because they can be partitioned into two subsets with 
intersecting convex hulls, so it is impossible to separate one of these subsets 
from the other. Thus, the VC dimension of this particular classifier is 3. This is 
the example shown in Figure 3a). 

 A k-nearest neighbour with a k=1 classifier has infinite VC dimension and zero 
prediction error as, eventually, all points will be learned.  

 A single-parametric sine classifier on real numbers; i.e., for a certain threshold 
w, the classifier f(w) returns one if the input number x has sine (wx) > 0 and 0 
otherwise, then the VC dimension of f(w) is infinite because: it can shatter a 
finite subset of the set {2-m| m ∈ ℕ}. Figure 3b) shows an example of a set of 
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points that are not shattered by this function to emphasise that not every set of 
cardinality equal to the VC dimension of a classifier will be shattered.  

Hilbert Space ℋ is a generalisation of the Euclidian space in the infinite dimension. More 
details will be explained in chapter five. In the infinite dimension, the inner product in step 
6.d in the SVM linear solution steps above, (x . x ) can be performed after mapping both 
vectors to the higher dimensions using a mapping function: Φ: ℝ → ℋ, where ℋis an 
infinite dimension and ℝ  is considered in the ℒ as a lower dimension. The algorithm would 
do the dot products as (Φ(x ). Φ(x )) everywhere a lower-dimensional dot product (x . x ) 
is applied. Possible mappings to ℝ  are as follows: 

Φ(
x
x  ) =  √2

x
x x

x

, or  Φ(
x
x  ) =

√
 

(x − x )
2x x

(x + x )

 

Or a possible mapping to ℝ : 

Φ
x
x  =  

⎣
⎢
⎢
⎡

x
x x
x x

x ⎦
⎥
⎥
⎤

 

We can replace the mapping with a Kernel function Κ x , x =  (Φ(x ). Φ(x )) that 
produces the same result without explicitly mapping every vector in the dataset or even 
defining a specific mapping. This will be further explained in chapter five while discussing 
the representer theorem and how it reduces searching the large space ℋ to just finding the 
optimal values of the m coefficients 𝛼 , … , 𝛼  of x , … , x  with each x  a vector of the 
features. Example Kernel functions are: 

 Κ x , x = x . x + 1 , results in a classifier polynomial equation of degree = p. 

 Κ x , x = 𝑒 , results in a classifier Gaussian radial basis function (RBF) 

equation. 

 Κ x , x = tanh 𝜅x . x − 𝛿 , results in a particular kind of two-layer sigmoidal 

neural network. 
This requires that the Hilbert Space Higher dimension ℋ defines an inner product (not just 
the scalar dot product) such that any Cauchy sequence of points (that grows very close as 
the sequence progresses less than a given small positive distance) converges to a point in 
the space.  
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Mercer’s condition: The kind of Kernel functions that define a dot product in some infinite 
space should conform with Mercer’s condition, which states that there exists a mapping Φ 
and an expansion such that: 

Κ(𝑥, y) = ∑ Φ(x) Φ(y)  if and only if, for any g(x) such that ∫ 𝑔(𝑥) 𝑑𝑥 is finite. Then, 
∫ Κ(𝑥, y)𝑔(𝑥)𝑔(𝑦) 𝑑𝑥𝑑𝑦 ≥ 0. Therefore, any kernel satisfies Mercer’s condition if it is of 
the form Κ(𝑥, y) = ∑ 𝑐 (𝑥. 𝑦) , where the cp are positive real coefficients, and the 
series is uniformly convergent. Using such kernel produces a Hilbert Space Higher dimension 

ℋof the dimension= the combination  𝐶(𝑑 + 𝑝 − 1, 𝑝) = 𝐶
𝑑 + 𝑝 − 1

𝑝
=  

( )!

( !( )!)
 . For 

example, for a degree p = 4 polynomial, and for images data consisting of 16 by 16 pixels 
(d=256), dim(ℋ) is 183,181,376.  

Python notebook Classification_Linear_NonLinear.ipynb compares a number of classification 
algorithms on different types of datasets. It shows clearly the linearly separable datasets 
and the non-linearly separable ones classified by different SVM kernel functions and other 
linear and non-linear algorithms. 
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