
Chapter 2: Subspace Learning

As mentioned in chapter one, datasets are present in matrix forms, in which a row is a
sample or separate entity described by values (elements of a vector) given in the columns
representing the different features. Each feature is a dimension to this dataset with a
random variable in an acceptable domain of values with a minimum, maximum, mean,
median and standard deviation and variance and covariance with other dimensions. These
measures explain the dynamics or the structure of the dataset of the sample being studied.
Various methods explain the different levels of analysis, such as:

 Descriptive statistics of the sample. These will be described in section 2.1.
o Analysing the variance and covariance of the features observed or

measured.

 Inferential statistics methods infer new knowledge based on the dataset sample
provided. This can be causal analysis or prediction of future values.

 Linear subspace learning (LSL) reduces the data dimensionality using various
methods. These methods are divided into projective methods and manifold
modelling methods.

o The projective methods identify latent variables or factors or indicators
that are unobserved in the dataset but explain the correlations between
the observed variables. This is useful for feature extraction and to
reduce the dimensionality of a dataset. These methods use linear
projections such as principal component analysis (PCA), Singular Value
Decomposition (SVD), independent component analysis (ICA), linear
discriminant analysis (LDA), canonical correlation analysis (CCA) and
partial least squares (PLS), Factor Analysis (FA), Non-Negative Matrix
Factorisation (NMF), and the generalised Nystr�̈�m method. These will
be described in section 2.2.

o The manifold modelling methods learn a lower-dimensional manifold
containing that data points that are embedded in the original high-
dimensional space preserving the non-linear structures ignored in the
projective methods. Multidimensional scaling (MDS) maps the original
dataset to a lower-dimensional manifold without modelling the
manifold. Methods that model the lower-dimensional manifolds include

CHAPTER 2

2

Isometric Feature map (Isomap), locally linear embedding, and spectral
clustering. These will be described in section 2.3.

 Sometimes the data are not separable in the lower dimension, and mapping to a
higher dimension makes it linearly separable there. The SVM and the Kernel
trick will be described in section 2.4, and the Kernel trick will be further
explained using representation theory in chapter five.

 Multimodal and heterogenous datasets analysis (multiway). This process is
called multilinear subspace learning (MSL), which directly extracts features from
their multidimensional space to lower-dimensional space. These will be
discussed in chapters three and onward.

2.1 Descriptive statistics and analytic statistics

Descriptive statistics explain the values of features captured in 2-dimensional arrays. A
complete review of statistical analysis with python is found in books such as (Farrell, 2020).
This book will review only the statistical concepts that we will need in the remaining
discussions in this or the following chapters. The simplest understanding of a dataset’s
numerical values domains is performed by identifying the minimum, the maximum, the

mean �̅� = ∑ 𝑥 , the median = 𝑥 , the mode (the most occurring value), and the first,

second and third quartile. To identify how the values are distributed around the mean and
towards the extreme values, a standard deviation is calculated as the square root of the
average of the squared difference of each value of x and the mean 𝑥, 𝑠𝑡𝑑 𝑑𝑒𝑣 (𝑥) =

∑ (̅)

. The variance is the standard deviation squared, which is a more stable metric.

The mean and the standard deviation are the main metrics of the central limit theorem
illustrated in the normal (Gaussian) distribution. This is considered first-order statistics.

On the other side, an analysis of the observed features’ variance can explain the dataset’s
structure and how the observed features change together and affect each other. The
variance of a variable is defined as the squared standard deviation. The covariance between
two features in the dataset explains how a change in one value can or can not affect the
other. A covariance between two features x and y vectors are measured as ∑ =

𝑐𝑜𝑣 (𝑥, 𝑦) =
∑ (̅)()

 . A covariance square matrix is measured for all covariances

between all features and each other, in which the diagonal values are the variance of one
feature with its mean, and it is calculated as follows:

CHAPTER 2

3

𝑣𝑎𝑟(𝑥) ⋯ 𝑐𝑜𝑣 (𝑥 , 𝑥)
⋮ ⋱ ⋮

𝑐𝑜𝑣 (𝑥 , 𝑥) ⋯ 𝑣𝑎𝑟(𝑥)

A correlation coefficient r between two features x and y is measured as 𝑟 =
(,)

() ()

The correlation coefficient r ranges from -1, indicating negative correlation (inverse
proportional features, an increase in one causes a decrease in the other), to 0, indicating
uncorrelated features, to 1, indicating positive correlation (proportional features, an
increase in one causes an increase in the other). The outcome is identifying redundant
features that do not add much information by being highly correlated with another feature
in the dataset. This information is captured by linear Algebra as second-order statistics. The
remaining chapters in the book will handle the cases of multilinear algebra, which is
considered higher-order statistics.

Methods of dimensionality reductions are applied to reduce the number of
features/variables to include only the features that contribute more to the variance. The
above-explained methods handle the observed features as measured without the required
extra preprocessing steps of handling missing values, sample size, unbalanced datasets,
power analysis, and others to complete an efficient statistical analysis of a dataset.

2.2 Projective Methods - Linear Subspace
Learning (LSL)

We have learned in chapter one that vectors usually are members of a vector space under
linear transformations of addition and scalar multiplication. Learning a low-dimensional
subspace representing a dataset is the primary method in dimensionality reduction that
does not lose much information. When we multiply a vector v in a higher dimension m by a
linear transformation matrix M of rows equals the high dimensions of the input vector m,
and the required lower dimension in columns as n, this process projects the input vector to
the lower dimension u specified by the projection matrix. 𝑣𝑀 = 𝑢 , where 𝑣 ∈ ℝ , 𝑀 ∈

ℝ × , 𝑢 ∈ ℝ .

Linear Subspace Learning (LSL) methods identify various structures in matrices using various
approaches. These methods help identify the dynamics of a dataset such that the
complexity can be reduced by removing linearly dependent features and redundant features
and applying projection on lower dimensions capturing as much as possible from the
identified structure. The simplest LSL is the rank-1 decomposition of a given matrix X of

CHAPTER 2

4

linearly dependent columns, such that X=abT, where a and b are two vectors that can
construct matrix X as follows:

𝑋 =
1 2 3
2 4 6
3 6 9

= [1 2 3]
1
2
3

This is generalised as rank-R factorisation, such that X is composed of R rank-1 components:
𝑋 = 𝑎 𝑏 + ⋯ + 𝑎 𝑏 = 𝐴𝐵 . This will be further explained in the Singular Value
Decomposition (SVD) later as the foundation for matrix compression and completion
algorithms. Example matrix factorisation algorithmic approaches include principal
component analysis to reduce the dimensionality while capturing the most variance, which
will be further explained below. Also, Dictionary Learning algorithms aim to estimate from
the known observations X, the sparse dictionary vectors and the Mixing Matrix of these
vectors constructing the observations. The estimated dictionary vectors should be as sparse
as possible, so combinations of these dictionary vectors can represent a high dimensional
large dataset. Similarly, Factor Analysis algorithms estimate hidden/latent factors and their
effects on the observations. Example Application is extracting sources in Blind Source
Separation (BSS) problem; BSS aims to learn separate data components representing an
entangled dataset. Each algorithm adds additional constraints to be suitable for different
problems. Estimating two unknowns from one known is an underdetermined system of
equations on which various iterative algorithms are proposed.

These two-way analysis methods apply covariance analysis between the features’ pairs or
other pair-wise statistical analyses. We can repeat the data collection in different time slots
adding a third dimension of the time series. We can also divide a column into groups such as
age groups 1-3, 3-5, and so forth. This needs a three-way analysis or higher that will
gradually be described in this book starting from chapter three. We can correlate different
entities/objects (like students and subjects) using different variables in which different
modes will describe either an object or a variable based on the analysis requirements (Lu,
Plataniotis and Venetsanopoulos, 2014).

Among various LSL algorithms, principal component analysis (PCA) and linear discriminant
analysis (LDA) are the two most widely used in many applications. PCA is an unsupervised
algorithm that does not require labels for the training samples, while LDA is a supervised
method that makes use of class-specific information (Lu, Plataniotis and Venetsanopoulos,
2011).

CHAPTER 2

5

2.2.1 Motivational Problem

A motivational problem will illustrate how to model a real-life problem into a matrix and
what the eigenpairs represent to help understand eigenvalues and eigenvectors. The
following table shows how three pizza kitchens on campus, labelled by their locations as A,
B, and C, historically deliver pizza to all locations. Figure 1 illustrates the transition matrix of
drivers’ locations on the left and the graph representing the transitions on the right.

A B C

A 0.3 0.3 0.4

B 0.4 0.4 0.2

C 0.5 0.3 0.2

Figure 1: Pizza delivery drivers’ location distribution transition matrix and graph.

The first row in this table is interpreted as follows: Kitchen in location A deliver 30% of the
calls it receives to location A, 30% to location B and 40% to location C. The other two rows
read the same. Delivery drivers start from the row location and end at the column location
after one delivery based on the given probability distribution. The rows are the probability
distribution of all possibilities and sum to 1. A driver must be at one of the three locations.

Let 𝑝(K) denote the probability that a driver starts at location B, ends at B, after k
deliveries

Let 𝑝(k) denote the probability that a driver starts at location A, and ends at C after k
deliveries.

Same for 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , 𝑝(k) , and 𝑝(k)

Then predicting if a driver starts at C, what is the probability it will be at B after 2
deliveries? Based on probabilities in the first move:

𝑝(2) = 𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) =0.33

Notice that this is the dot product between row 3 (C) and column 2 (B).

Another example, if a driver starts at B, the probability of being at B after two deliveries
is:

CHAPTER 2

6

𝑝(2) = 𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) + 𝑝(1) 𝑝(2) =0.34

This is the dot product between row B and column B:

 𝑝(2) = 0.2 𝑝(k) + 0.4 𝑝(k) + 0.3 𝑝(k)

𝑝
() is the probability vector denoting a driver’s probability after k deliveries starting

from location l, using the probabilities represented as a (transition) matrix S.

𝑝
()

=

𝑝(k)

𝑝(k)

𝑝(k)

, 𝑆 =
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

The transition from delivery number k to delivery k+1 is then written as the matrix-
vector product (multiplication).

𝑝(k+1)

𝑝(k+1)

𝑝(k+1)

=
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

𝑝(k)

𝑝(k)

𝑝(k)

To know all probabilities from all locations to all locations after two deliveries, we can do
matrix-matrix multiplication two times: S2.

𝑆 =
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

We can easily now calculate where all drivers will be after three deliveries by another matrix
multiplication, tracing where they start at the rows and where they end on the columns:

𝑆 𝑆 = 𝑆 =
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 =
0.385 0.333 0.282
0.390 0.334 0.276
0.393 0.333 0.274

Repeating this process using Python rather than by hand, we can find the probabilities for
the drivers’ location distribution for the next eight days:

CHAPTER 2

7

𝑆(𝑆() 𝑆()

0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

0.41 0.33 0.26
0.38 0.34 0.28
0.37 0.33 0.30

𝑆(𝑆() 𝑆()

0.385 0.333 0.282
0.390 0.334 0.276
0.393 0.333 0.274

0.3897 0.3333 0.2770
0.3886 0.3334 0.2780
0.3881 0.3333 0.2786

𝑆(𝑆() 𝑆()

0.38873 0.33333 0.27794
0.38894 0.33334 0.27772
0.38905 0.33333 0.27762

0.388921 0.333333 0.277746
0.388878 0.333334 0.277788
0.388857 0.333333 0.277810

𝑆(𝑆() 𝑆()

 0.3888825 0.3333333 0.2777842
0.3888910 0.3333334 0.2777756
0.3888953 0.3333333 0.2777714

0.38889017 0.33333333 0.2777765
0.38888846 0.33333334 0.2777782
0.38888761 0.33333333 0.27777906

Observe that the prediction starts to change less and less as we go from one delivery to the
next in the future. As columns change less and less below a specified threshold, we say that
the system converged.

If a vector of the initial distribution of drivers per location, such as [0.3, 0.3, 0.3], is
multiplied by S, it will show the distribution of drivers after one delivery:

import numpy as np
S = np.array(
 [[0.3, 0.3, 0.4],
 [0.4, 0.4, 0.2],
 [0.5,0.3,0.2]])
p = S
for k in range(8):
 print(p)
 p = p.dot(S)

CHAPTER 2

8

𝑝() = [0.3 0.3 0.3]
0.3 0.3 0.4
0.4 0.4 0.2
0.5 0.3 0.2

 = [0.36 0.3 0.24]

After two deliveries throughout the day, S2, the right-hand side, will converge to the same
number no matter what we started from.

𝑝() = [0.3 0.3 0.3]
0.42 0.32 0.26
0.38 0.34 0.28
0.37 0.33 0.30

 = [0.3504 0.3 0.2496]

After nine deliveries throughout the day, S9, the right-hand side, will converge to the same
number no matter what we started from.

𝑝() = [0.3 0.3 0.3]
0.38888894 0.33333333 0.27777773
0.38888887 0.33333333 0.27777779
0.38888884 0.33333333 0.27777783

= [0.35 0.3 0.25]

From the 10th delivery onward, it converges to this drivers’ location vector and does not
change any future: [0.35 0.33 0.25]

If we continue to predict the drivers’ locations after many deliveries from now by executing
the previous python loop for 64 iterations for the same probability distributions of calls and
deliveries, we will observe that the prediction does not change very much. The resulting
drivers’ locations vectors will hold approximately the prediction for what typical location
they might be at after any number of deliveries.

If we change the initial drivers’ locations vector to reflect any initial distributions, we will
also end up with the same typical drivers’ locations prediction. Try the code snippet, you will
find that the code converged to the same vector as before on the 10th iteration only.

At any given time step, 35% of the drivers will be at location A, 33% at location B, and 25%
at location C. The drivers’ initial distribution should not change the typical distribution after
several deliveries.

These are called Markov Processes. These kinds of techniques apply to many problems. For
example, the Google page rank algorithm determines which website is the most important
(highest rank) based on the probability that the user will select the page link from several
incoming links to other pages. Another example is predicting the next day’s weather based
on today’s weather using probabilities collected over several days in a given location. We
predicted the next drivers’ location distribution after one delivery by multiplying the
probabilities of calls location distribution and transitions in matrix S by the current drivers’

CHAPTER 2

9

location distribution: d(k+1) = Sd(k), which can be extended to any number of deliveries
prediction by d(k) = Skd(0), to observe that eventually d(k+1) ≈Sd(k). This diminished change
means that d(k+1) came arbitrarily close to an eigenvector, x, associated with the eigenvalue
𝝀 =1 of matrix S: Sx = 𝝀x. For transition matrices, the dominant Eigenvalue 𝝀 is1.

The dominant Eigenvector represents the typical drivers’ location distribution in the
previous example. This is known as the (algebraic) eigenvalue problem. Scalars 𝜆 that satisfy
Ax = 𝜆x for non-zero vector x are known as Eigenvalues, while the corresponding non-zero
vector x to each 𝜆 Eigenvalue is known as Eigenvectors. From the previous calculations, we
can answer questions like “what is the typical drivers’ location distribution for this Pizza
kitchen calls’ distribution?” (Answer: 35% at A, 33% at B, and 25% at C). A similar approach
can be used to answer questions like “what is the most requested pizza topping in a given
order?”

The power method finds an eigenvector associated with the largest Eigenvalue (in
magnitude). It starts by guessing an initial value for x, then loops multiplying Ax to get new
x, optionally dividing the new x, by the last element of the previous value (or any
normalisation step), until the new value does not change (much) anymore. The dominant

Eigenvalue is the Rayleigh quotient of eigenvector x, which is .

Matrices, Markov chains, Eigenvalue and Eigenvectors have many real-world applications.
There are many, many examples of the use of Markov chains. A brief look at some
significant applications can be found in (VON HILGERS and LANGVILLE†, no date) (Geijn,
2012), (Carter, 1995).

import numpy as np
rand=np.random.RandomState(235)
A = np.array(rand.random(size=(3, 3)))
x = np.array(rand.random(size=3))
x_Old = np.array(rand.random(size=3))
i=0
while np.isclose(x, x_Old).all() == False:
 i=i+1
 x_Old = x
 x = A.dot(x)
 if x[-1] != 0:
 x = np.true_divide(x, x[-1])
 print("i: ", i, " x = ", x)
eigval = np.true_divide(x.T.dot(A.dot(x)), x.T.dot(x))
print ("Dominant eigen value = ", eigval)

CHAPTER 2

10

2.2.2 Eigendecomposition

The algebraic eigenvalue problem is a matrix decomposition method that reveals various
algebraic properties that make working with matrices easier. Scalars 𝝀 are the eigenvalues
of matrix A that satisfy Ax = 𝝀x for non-zero eigenvectors x. The pizza delivery drivers’
location distribution examples in the previous section illustrate how a Markov Process uses
a transition Matrix, such that the power method converges to the most dominant
Eigenvector corresponding to the largest Eigenvalue, which was 1 for transition matrices.
Then we saw how to generalise the power method to identify the most dominant eigenpair
for any given non-transition matrices using the Rayleigh quotient for the dominant
Eigenvalue. We need another method to find all eigenvalues and corresponding
eigenvectors (eigenpairs). Eigenvalues and eigenvectors often explain the bases that are
invariant to linear transformations. All eigenvalues are non-negative, real numbers because
covariance matrices are symmetric and positive semi-definite.

In Python:

eigen decomposition of a matrix A
from numpy import linalg as LA
eignVal, eignVec = LA.eig(A)

2x2 Matrix Example:

To find the Eigenvalues and Eigenvectors of a matrix A ∈ ℝ × = 7 3
3 −1

, we need to

perform the following steps:

Step 1: Find the characteristic polynomial of 𝑨. Since 𝐼𝑥 = 𝑥 for any given vector x and the
identity matrix I, then Ax= 𝜆𝑰x, therefore Ax- 𝜆𝑰x = 0 (A- 𝜆𝑰)x = 0, for Eigenvector x

and Eigenvalue 𝜆. Since x should be a non-zero vector, solving for (A- 𝜆𝑰) = 0, by

calculating the determinant is called the characteristic equation. This will find the non-

zero solution.

𝑴=𝑨−𝜆𝑰 =
7 − λ 3

3 −1 − λ

Det(M) = |𝑴|=|𝑨−𝜆𝑰| , using the 2x2 determinant rule:

=
7 − λ 3

3 −1 − λ

= (7 − λ)(−1 − λ) − 9 = λ − 6λ − 16 = (λ − 8)(λ + 2)

Step 2: Find the roots of the characteristic polynomial of 𝑨 to obtain the Eigenvalues of 𝑨.

CHAPTER 2

11

 (λ − 8)(λ + 2) = 0 Then the roots are λ = 8, λ = −2

Step 3: Repeat the following (i) and (ii) steps for each Eigenvalue 𝜆 of 𝑨

For Eigenvalue λ = 8:

(i)Form the matrix 𝑴=𝑨−5𝑰

7 − 8 3
3 −1 − 8

 =
−1 3
3 −9

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero
vectors are linearly independent Eigenvectors of 𝑨

belonging to 𝜆.)

−1 3
3 −9

𝑥
𝑥 = 0

−𝑥 + 3𝑥 = 0, and 3𝑥 − 9𝑥 = 0

Then 𝑥 = 3𝑥

The Eigenvector x=
3𝑥
𝑥

, or 𝑥 3
1

, for 𝑥 ≠ 0

such that 3
1

is one possible Eigenvector.

For Eigenvalue λ = −2:

(i)Form the matrix 𝑴=𝑨−3𝑰

7 + 2 3
3 −1 + 2

 =
9 3
3 1

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero
vectors are linearly independent Eigenvectors of 𝑨

belonging to 𝜆.)

9 3
3 1

𝑥
𝑥 = 0

9𝑥 + 3𝑥 = 0, and 3𝑥 + 𝑥 = 0

Then 3𝑥 = −𝑥

The Eigenvector x=
𝑥

−3𝑥 or 𝑥 1
−3

 for 𝑥 ≠ 0

such that 1
−3

is one possible Eigenvector.

3x3 Matrix Example:

To find the Eigenvalues and Eigenvectors of a matrix A ∈ ℝ × =
4 1 −1
2 5 −2
1 1 2

, we follow the

same steps as above:

Step 1: Find the characteristic polynomial of 𝑨.

𝑴=𝑨−𝜆𝑰 =
4 − λ 1 −1

2 5 − λ −2
1 1 2 − λ

Det(M) = |𝑴|=|𝑨−𝜆𝑰| , using the 3x3 determinant rule:

=
4 − λ 1 −1

2 5 − λ −2
1 1 2 − λ

4 − λ 1
2 5 − λ
1 1

= (4 − λ)(5 − λ)(2 − λ) − 2 − 2 + (5 − λ) + 2(4 − λ) − 2(2 − λ)

= −λ + 11λ − 39λ + 45 = −(λ − 5)(λ − 3)

CHAPTER 2

12

Step 2: Find the roots of the characteristic polynomial of 𝑨 to obtain the eigenvalues of 𝑨.

−(λ − 5)(λ − 3) = 0 The roots are λ = 5, λ = 3

Step 3: Repeat (i) and (ii) for each eigenvalue 𝜆 of 𝑨

For Eigenvalue λ = 5:

(i)Form the matrix 𝑴=𝑨−5𝑰

4 − 5 1 −1
2 5 − 5 −2
1 1 2 − 5

=
−1 1 −1
2 0 −2
1 1 −3

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero
vectors are linearly independent Eigenvectors

of 𝑨 belonging to 𝜆.)
−1 1 −1
2 0 −2
1 1 −3

𝑥
𝑥
𝑥

= 0

Then 𝑥 = 𝑥 , 𝑥 = 2𝑥

The Eigenvector x=
𝑥

2𝑥
𝑥

, or 𝑥
1
2
1

, for

𝑥 ≠ 0 such that
1
2
1

is one possible

Eigenvector.

For Eigenvalue λ = 3:

(i)Form the matrix 𝑴=𝑨−3𝑰

4 − 3 1 −1
2 5 − 3 −2
1 1 2 − 3

=
1 1 −1
2 2 −2
1 1 −1

(ii)Find the solution of 𝑴𝒙=𝟎(These non-zero
vectors are linearly independent Eigenvectors

of 𝑨 belonging to 𝜆.)
1 1 −1
2 2 −2
1 1 −1

𝑥
𝑥
𝑥

= 0

Then 𝑥 + 𝑥 = 𝑥

The Eigenvector x=
𝑥
𝑥

𝑥 + 𝑥
, or 𝑥

1
0
1

+

 𝑥
0
1
1

, for 𝑥 ≠ 0, 𝑥 ≠ 0, such that
1
1
2

is

one possible Eigenvector.

PS the Product of Eigenvalues is equal to the determinant of the matrix. For the First

example, det(A) = det 7 3
3 −1

= −16 = 8 x -2 = -16. For the second example, det(A) = 4 .

det 5 −2
1 2

-1 . det 2 −2
1 2

-1 . det 2 5
1 1

= 45 = 5 𝑥 3 𝑥 3 = 45

Eigenvalues and Eigenvectors of a square matrix have many applications in Communication
systems, engineering disciplines such as in designing bridges, art applications such as music
composition, and signal processing such as designing car stereo systems and concert halls,
among many more. An online calculator can be found at
https://www.symbolab.com/solver/matrix-eigenvalues-calculator.

CHAPTER 2

13

This simple method is not computationally efficient for larger matrices, as it might attempt
to create memory a typical computer might not have. An algorithm based on the QR
factorisation is used, and various iterative methods are similar to the power method and its
convergence criteria. Calling any of these functions such as numpy.linalg.eig, usually achieve
speed-ups by employing the available hardware in the machine to process the computation
in parallel.

Another computational consideration is the Roundoff errors. These affect small and large

matrices equally. is stored as a rounded decimal point figure using normal notation. In

normal notation, a number is written as m x 10a where 0.1 ≤ |m| < 1. (In scientific notation,
1 ≤ |m| < 10), where m is mantissa and a is abscissa. The number 1234 is represented as
0.1234 x 104, mantissa = 0.1234 and abscissa = 4. This representation affects the accuracy of
any numerical calculations, particularly multiplication. This is why the log of any value is
often used to turn multiplication into an addition operation.

2.2.3 Principal Component Analysis (PCA)

The principal components analysis is defined as linear feature projection on new orthogonal
coordinates such that it captures the most variance in the first coordinate (principal
component) and lesser remaining variance in decreasing order in the following coordinates.
These principal components are the eigenvectors of the dataset and are orthogonal to each
other and considered uncorrelated factors. Finding the projection of the original dataset
onto the most significant initial principal components (typically 2 or 3) will produce an
uncorrelated model that captures the most variance of the original dataset in which the
signal-to-noise ratio is highest. The steps to calculate the PCA are simply calculating the
eigenvectors of the covariance matrix of a dataset.

PCA can be calculated using a direct projection matrix such that y = UTx, where y ∈ ℝ is the
projected data, U ∈ ℝ × is the projection matrix containing the p Eigenvectors, and x ∈
ℝ = (𝑥 − �̅�) is the centred m-dimensional dataset standardised to zero-mean. The
projected dataset on each principal component ui will produce a new lower dimension
dataset, on which a component Cj for 0 ≤ j ≤ p-1 (p being the lower dimension number of
components capturing the most variance) will be a weighted sum of the original dataset
features:

Cj = w1(x1) + w2(x2) + ... + wn(xn).

The steps are as follows:

Step 1: Center the dataset around zero means.

1. 𝑋 = ∀𝑚 (𝑥 − �̅�)

CHAPTER 2

14

Step 2: Calculate the scatter matrix ST of the dataset, as the covariance matrix multiplied
by (m-1)

2. 𝑆 = ∑ 𝑥 𝑥 = XXT
Step 3: Solve for the first component:

3. 𝑢 = argmax 𝑢 𝑆 𝑢 subject to 𝑢 𝑢 = 1 as a normalisation constraint.

4. This can be solved by Lagrange multiplier 𝜆 to include the constraint in the equation:

𝜓 = 𝑢 𝑆 𝑢 − 𝜆(𝑢 𝑢 − 1)
1. Then we minimise by differentiating with respect to 𝑢 : and set to 0,

𝛿𝜓

𝛿𝑢
= S 𝑢 − λ𝑢 = (S − λI)𝑢 = 0

Therefore, λ and u1 are an Eigenvalue and its corresponding Eigenvector of ST and the
quantity to be maximised is: 𝑢 𝑆 𝑢 = 𝑢 λ𝑢 = λ𝑢 𝑢 = λ𝐼 = λ. This will be the
largest Eigenvalue and the corresponding Eigenvector as the first principal component.

Step 4: Solve for remaining p components by adding the orthogonality constraints by
repeating steps 5:7 for each Eigenvector. For example, solving for 𝑢 require the following
steps:

5. 𝑢 = argmax 𝑢 𝑆 𝑢 subject to 𝑢 𝑢 = 1 as a normalisation constraint and

𝑢 𝑢 = 0 as the orthogonality constraint with the previous Eigenvector.
6. Again use the Lagrange multiplier 𝜇 to include the second constraint in the

equation: 𝜓 = 𝑢 𝑆 𝑢 − 𝜆(𝑢 𝑢 − 1) − 𝜇(𝑢 𝑢)
7. Differentiate with respect to 𝑢 and set = 0,

𝛿𝜓

𝛿𝑢
= S 𝑢 − λ𝑢 − 𝜇𝑢

8. Multiply on the left by 𝑢 = 𝑢 S 𝑢 − λ𝑢 𝑢 − 𝜇𝑢 𝑢 = 0 → 𝜇 = 0

9. The first two terms are zero, as shown earlier and 𝑢 𝑢 = 1, leaving it =

(S − λI)𝑢 = 0 as for 𝑢 .
Step 5: Assemble the projection Matrix U columns, 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒑

Step 6: Project the dataset y = Ux

PCA can be expressed in a more succinct matrix form. If E is the (orthonormal) matrix of
column Eigenvectors of the covariance matrix C, and Λ the diagonal matrix of (non-negative)
Eigenvalues of C, then CE = EΛ. The order of the columns of E needs to be such that the λi ≡
Λii is in descending order: λi ≤ λi-1 ∀ i = 1, . . . , d − 1. Now for some unit vector n1 ∈Rd

CHAPTER 2

15

consider the quantity: 𝑛 𝐸 𝐶𝐸𝑛 = 𝑛 Λ𝑛 . The left-hand side is the variance of the
projections of the (centred) data along the unit vector principal component En1. The right-
hand side is ∑ 𝑛 𝜆 .

The variance of the data projected along the direction of this principal component is just λi.
This can be repeated until the required variance is captured by searching for the unit vector
n2 that is orthogonal to n1 (i.e., for which n21 = 0) and which maximises the right-hand side,
which is given by n2i = δi,2 (Burges, 2009).

Many PCA-based algorithms exist, including Kernel PCA, Probabilistic PCA, and oriented PCA.
In summary, PCA projects the existing data on fewer linearly independent components
capturing as much variance of the data as possible. When the remaining variance along all
directions orthogonal to the p principal components chosen is zero or very negligible, then
the dataset lies along a lower-dimensional manifold ∈ ℝ embedded in Rm. (Lu, Plataniotis
and Venetsanopoulos, 2014).

PCA Matrix example:

Find the PCA of a matrix X ∈ ℝ × =

2 3 1
3 1 0
2 0 1
5 0 2

Step 1: Data preprocessing: remove mean values from each feature

First Step by Step calculations, but using implemented functions for mean,
covariance, and Eigendecomposition.
import numpy as np
X = np.array([[2,3, 1], [3, 1, 0], [2, 0, 1], [5, 0, 2]])
X

array([[2, 3, 1],

 [3, 1, 0],

 [2, 0, 1],

 [5, 0, 2]])

Calculate the mean of each column
M = np.mean(X.T, axis=1)
M

array([3., 1., 1.])

#center columns by subtracting column means
C = X - M
C

array([[-1., 2., 0.],
 [0., 0., -1.],
 [-1., -1., 0.],

CHAPTER 2

16

 [2., -1., 1.]])
Step 2: Calculate the covariance matrix.

#calculate covariance matrix
sigma = np.cov(C.T)
sigma

array([[2. , -1. , 0.66666667],
 [-1. , 2. , -0.33333333],
 [0.66666667, -0.33333333, 0.66666667]])
Step 3: Calculate the eigenvectors and eigenvalues.

eigen decomposition of covariance matrix
from numpy import linalg as LA
eignVal, eignVec = LA.eig(sigma)
eignVal, eignVec

(array([3.19940358, 1.0821583 , 0.38510479]),
 array([[-0.70083477, 0.57765664, -0.41850141],
 [0.65971771, 0.74802961, -0.07227894],
 [-0.27129904, 0.32674839, 0.90533548]]))
Step 4: Select Principal components. This small example did not reduce the dimensionality
and selected all principal components. Sometimes you need to reduce the dimensionality to
2 or 3 PCs out of 10 or more features by capturing the highest variance by checking the
“elbow” in the curve of a scree plot.

Print principal components
PC1 = eignVec[:,0].T.dot(C.T) # u0.x
PC2 = eignVec[:,1].T.dot(C.T) # u1.x
PC3 = eignVec[:,2].T.dot(C.T) # u2.x
print("PC1: ", PC1)
print("PC2: ", PC2)
print("PC3: ", PC3)
PC1: [2.02027019 0.27129904 0.04111706 -2.33268629]

PC2: [0.91840258 -0.32674839 -1.32568625 0.73403206]

PC3: [0.27394352 -0.90533548 0.49078035 0.1406116]

Step 5: Derive the new projected dataset: Projected_data = normalised_data x
selected_principal_components.

project data
P = eignVec.T.dot(C.T)
P.T

array([[2.02027019, 0.91840258, 0.27394352],
 [0.27129904, -0.32674839, -0.90533548],
 [0.04111706, -1.32568625, 0.49078035],

CHAPTER 2

17

 [-2.33268629, 0.73403206, 0.1406116]])

Using Sklearn PCA implementation
#Second numpy Calculations
from sklearn.decomposition import PCA

#create PCA instance
pca = PCA(3)
#fit on Data
pca.fit(X)
#access values and vectors
print("PCA Components = ", pca.components_)
print("PCA Explained variance ", pca.explained_variance_)
print("PCA Explained variance ratio ",
pca.explained_variance_ratio_)
B = pca.transform(X)
print("Transformed Data ", B)
PCA Components = [[0.70083477 -0.65971771 0.27129904]
 [-0.57765664 -0.74802961 -0.32674839]
 [0.41850141 0.07227894 -0.90533548]]
PCA Explained variance [3.19940358 1.0821583 0.38510479]
PCA Explained variance ratio [0.68558648 0.23189106 0.08252245]
Transformed Data [[-2.02027019 -0.91840258 -0.27394352]
 [-0.27129904 0.32674839 0.90533548]
 [-0.04111706 1.32568625 -0.49078035]
 [2.33268629 -0.73403206 -0.1406116]]

2.2.4 Singular Value Decomposition (SVD)

SVD decomposes a matrix X into three constituent matrices to remove the redundancy in
the original features by choosing the highest singular values and their corresponding
features resulting in dimensionality reduction. The Gauss-Jordan Elimination in chapter one
showed that the diagonalisation of a matrix reduces it to an easy-to-analyse matrix. The
Eigendecomposition takes the form A𝑢 = 𝜆 𝑢 where 𝑢 is the eigenvector corresponding to
the 𝜆i eigenvalue. This can be expressed in diagonalised form as: A𝑈 =Λ𝑈 or A =𝑈Λ𝑈 such
that Λ is a diagonal matrix containing the eigenvalues on the diagonal elements, and U
contains the eigenvectors as its columns (Deisenroth, Faisal and Ong, 2019).

A =
𝑢 , … 𝑢 ,

⋮ ⋱ ⋮
𝑢 , … 𝑢 ,

 𝜆 … 0
⋮ ⋱ ⋮
0 … 𝜆

𝑢 , … 𝑢 ,

⋮ ⋱ ⋮
𝑢 , … 𝑢 ,

Where 𝑢 = [𝑢 , , 𝑢 , , … , 𝑢 ,]

CHAPTER 2

18

The inverse Eigenvectors matrix exists only if the Eigenvectors are linearly independent. This
is possible only if A is a square matrix. To develop a similar decomposition for non-square
matrices, SVD starts by converting the input matrix to a special square matrix by multiplying
it by its transpose. AᵀA matrix has the following properties:

 Symmetrical, therefore, we can choose its eigenvectors to be orthogonal with
unit length (orthonormal) to each other.

 Square, i.e. invertible

 At least positive semi-definite (Eigenvalues are zero or positive),

 Both matrices (A and AᵀA) have the same positive Eigenvalues, and

 Both have the same rank r as A.

The equation to decompose a matrix X is given by: 𝑋 = 𝑈 S 𝑉

Where

 S is an n×n diagonal matrix, and the diagonal values in the S matrix are known as
the singular values of the original matrix X.

o The singular values are the square root of the Eigenvalues. The singular
values are arranged in descending order along the main diagonal in S.

o It is a diagonal matrix that can be reduced to only 𝑟 important values,
the rest of the matrix being zero. The choice of the rank is based on
eliminating linear dependant rows, which is the default matrix rank
definition and can be any smaller value than n to achieve lossy
compression (leaving out some non-zero but small Eigenvalues).

 𝐕 is an orthonormal column matrix; the columns of 𝐕 are called the right
singular vectors of X

o Note that we always use V in its transposed form, so the rows of VT are
orthonormal.

o It is a matrix that holds important information about the columns of X,
and the most important information about 𝐕𝐓 is stored in the first row.

o V is the corresponding unit Eigenvectors to the Eigenvalues squared and
placed in S.

 𝐔 is an orthonormal column matrix; the columns of the 𝐔 matrix are called the
left singular vectors of X;

o Each of its columns is a unit vector, and the dot product of any two
columns is 0 (orthogonal).

o It is a matrix that holds important information about the rows of X, and
the most important information about 𝑼 is stored in the first column.

CHAPTER 2

19

o It is calculated by using the property US(:,i) = XV(:,i)

For compression, we define the rank for the middle projection:

𝑋 = 𝑈 S 𝑉

Where 𝑟 is rank 𝑟 ≤ m and 𝑟 ≤ n, the rank of a matrix is the largest number of columns we
can choose for which no selected column is a linear combination of another selected
column. This is to say that such columns are linearly independent. This can also be
expressed in vectors form as linear combinations of orthonormal basis directions weighted
by the singular value σ in descending order: 𝑋 = 𝑈S𝑉 = σ u v + σ u v + ⋯ +

σ u v . This is illustrated in Figure 2.

Figure 2: SVD matrix decomposition illustration

Steps to calculate SVD:

Given a matrix X:

Step 1: Compute 𝐴=X𝑇X

Step 2: Do Eigendecomposition of 𝐴

Step 3: Calculate the singular values, which are the square root of the Eigenvalues

1. Sort the singular values in decreasing order; and arrange in S or Ʃ matrix along the
diagonal.

Step 4: Calculate the right singular vectors (columns of V)

1. the corresponding unit Eigenvectors are the right singular vectors of X, stored in V
Step 5: Find the left singular vectors 𝑈 by using the property US(:,i) = MV(:,i)

CHAPTER 2

20

Example 1:

Find Singular Value Decomposition (SVD) of a Matrix M ∈ ℝ × = −1 0
0 3

SVD(M) = U Σ VT

Step 1: Calculate A = MTM = −1 0
0 3

−1 0
0 3

=
1 0
0 9

Step 2: Find Eigenvalues and Eigenvectors of A = MTM

|A – 𝜆𝐼| = 0

1 − 𝜆 0
0 9 − 𝜆

 = 0

Then arranging by highest Eigenvalue, we have 𝜆 = 9, 𝜆 = 1

For 𝜆 = 9, the corresponding Eigenvector is:

1 − 9 0
0 9 − 9

𝑥
𝑥 = 0

−8 0
0 0

𝑥
𝑥 = 0

Now, reduce this matrix as follows: (check the Gaussian Elimination in chapter one)

R1←R1÷-8

1 0
0 0

𝑥
𝑥 = 0

Then 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 1

Then 𝒗𝟎 =
𝟎
𝟏

 is the Eigenvector corresponding to the Eigenvalue 𝜆 = 9

For 𝜆 = 1, the corresponding Eigenvector is:

1 − 1 0
0 9 − 1

𝑥
𝑥 = 0

0 0
0 8

𝑥
𝑥 = 0

Now, reduce this matrix by swapping the rows

CHAPTER 2

21

0 8
0 0

𝑥
𝑥 = 0

Then, reduce this matrix as follows:

R1←R1÷-8

0 1
0 0

𝑥
𝑥 = 0

Then 𝑥 = 1 𝑎𝑛𝑑 𝑥 = 0

Then 𝒗𝟏 =
𝟏
𝟎

 is the Eigenvector corresponding to the Eigenvalue 𝜆 = 1

Step 3: Calculate the singular values, which are the square root of the eigenvalues

𝜎 = 𝜆 = √9 = 3

𝜎 = 𝜆 = √1 = 1

This forms your singular values diagonal matrix Σ ∈ ℝ × =
𝜎 0
0 𝜎

=
3 0
0 1

Step 4: Calculate the right singular vectors (columns of V)

V is the corresponding unit eigenvectors, now called the right singular vectors of 𝑀

𝑉 ∈ ℝ × = [𝑣 𝑣] =
0 1
1 0

PS VTV = I (V has orthonormal columns: orthogonal and unit bases – of length 1).

Step 5: Find the left singular vectors 𝑈 by using the property US(:,i) = MV(:,i)

Which is u0 = 𝑀 . 𝑣 =
−1 0
0 3

.
0
1

 = 0

0 1
.

0
1

=
0
1

And u1 = 𝑀 . 𝑣 =
−1 0
0 3

.
1
0

=
−1 0
0 3

.
1
0

=
−1
0

U ∈ ℝ × = [𝑢 𝑢] =
0 −1
1 0

PS UTU = I (U has orthonormal columns: orthogonal and unit bases – of length 1).

The complete solution is: SVD(M) = U Σ VT = 0 −1
1 0

3 0
0 1

0 1
1 0

Example 2:

CHAPTER 2

22

Given 𝑋 =

⎣
⎢
⎢
⎢
⎡
−2 2
−4 −4
4 4
2 −2
0 0 ⎦

⎥
⎥
⎥
⎤

To compute SVD:

Step 1: Compute M=𝑋𝑇𝑋= 40 24
24 40

Step 2: do Eigendecomposition of M:

Eigenvalues: 𝜆 = 64 and 𝜆 = 16

Eigenvectors: 𝑢
−

√

−
√

, 𝑢
−

√

√

Step 3: Find Σ. From the square roots of the eigenvalues on the diagonal

s1=√64=8, s2=√16=4

Σ =
8 0
0 4

Step 4: Find V. From the eigenvectors

𝑉= √
−

√

√ √

Step 5: Find 𝑈. For example:

𝑢 = × 𝑀 . 𝑣 =
40 24
24 40

−
√

−
√

= √

−
√

 ,

𝑢 = × 𝑀 . 𝑣 =
40 24
24 40

−
√

√

= √

√

𝑈 = √ √

−
√ √

Python example:

CHAPTER 2

23

from numpy import array
from scipy.linalg import svd, diagsvd

X = array([[1, 2], [3, 4], [5, 6]])
print (X)
U, S, VT = svd(X)
to reconstruct the matrix:
Sigma = diagsvd(S, X.shape[0], X.shape[1])
X_reconstructed = np.dot(U, np.dot(Sigma, VT))
print(X_reconstructed)
np.allclose(X, X_reconstructed)
X = [[1 2]

 [3 4]

 [5 6]]

U = [[-0.2298477 0.88346102 0.40824829]

 [-0.52474482 0.24078249 -0.81649658]

 [-0.81964194 -0.40189603 0.40824829]]

S = [9.52551809 0.51430058]

VT = [[-0.61962948 -0.78489445]

 [-0.78489445 0.61962948]]

X Reconstructed = [[1. 2.]

 [3. 4.]

 [5. 6.]] Allclose: True

CHAPTER 2

24

2.2.4.1 Data Science with SVD

This example is credited to (Leskovec, Rajaraman and Ullman, 2014). Given Ratings of five
movies by seven users. The movies belong to a category or concept, and this information is
hidden in the observed data. We know that the movies belong to 2 categories: science
fiction and romance, so we choose r equals 2 to reveal these hidden (latent) features. We
can do SVD to identify the users’ interest in the concept in general and evaluate the weights
of ratings by the concept, such that:

 𝑴𝒏×𝒅=𝑼𝑛×𝒓𝞢𝑟×𝒓 (𝑽𝑟×𝑑)𝑻

𝑴: 𝑛umber of users (n) x number of movies (d)

𝑼: 𝑛 users x 𝑟 concepts: connects people to concepts.

𝞢: the strength of each concept

𝑽: 𝑑 movies x 𝑟 concepts: relates movies to concepts

 Matrix Alien Star Wars Casablanca Titanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2

Doing SVD on this matrix:

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.14 0
0.42 0
0.56 0
0.70 0

0 0.60
0 0.75
0 0.30⎦

⎥
⎥
⎥
⎥
⎥
⎤

12.4 0

0 9.5
0.58 0.58 0.58 0 0

0 0 0 0.71 0.71

CHAPTER 2

25

 X = U 𝜮 VT

Note: Generally, the concepts will not be as clearly delineated as in this hand-crafted
example. There will be fewer zeros in 𝑼and 𝑽. Check the ch2.ipynb to see actual values
generated from the sklearn Python package implementation of “TruncatedSVD”.

We can read various information from the SVD decomposition:

 VT: the first row of VT says that the first three movies belong to science fiction,
while the second row of VT tells us that the last two movies belong to the
romance genre.

 U: We can tell that Joe, Jim, John, and Jack are interested in science fiction only,
while Jill, Jenny, and Jane are interested in romance only and do not rate
science fiction movies at all.

 𝑺1: the strength of the first concept: sci-fic;

 𝑿𝑉 : each user’s rating is an average of all five movies, weighted by the first
concept;

 ‖𝑿𝑉 ‖: a score by the overall 7 users, weighted by the first concept.

 𝑆 = ‖𝑿𝑉 ‖, where 𝑺𝒊 is the 𝑖th value along the main diagonal line of 𝑺, and 𝑽𝒊 is
the 𝑖th column of 𝑽.

Online SVD Calculators:

https://atozmath.com/MatrixEv.aspx?q=svd

https://keisan.casio.com/exec/system/15076953160460

2.2.4.2 Compression with SVD

Other applications of SVD (X = 𝑈 S 𝑉) is to choose the highest rank-r
approximation to a given matrix X that is given by Xnxd = AWT, such that A =𝑈 and W =
S 𝑉 . The choice of small rank can be useful for compression. This happens by setting
the s=n-r smallest singular values to 0; then we can also eliminate the corresponding s
columns of U and V. Choosing the lowest singular values to drop minimises the root-mean-
square error between the original matrix X and its reconstructed approximation. The choice
of r can be made by studying the decay of the singular values. Python notebook ch2.ipynb
shows an image compression SVD example and how the choice of rank affects the quality of
the image.

CHAPTER 2

26

2.2.5 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a generative model that assumes a dataset to be a
linear mixture of some latent factors such that x = As, where A∈ ℝ × is the mixing matrix,
and s is the source or the independent components. ICA uses information theory to capture
mutually independent factors in a dataset, unlike PCA, which captures uncorrelated factors.
ICA estimates p unordered sources that should not be more than the observed mixtures x
(Lu, Plataniotis and Venetsanopoulos, 2014).

ICA attempts to find the unmixing matrix by employing non-Gaussianity from the central
tendency theorem to retrieve the independent components from the mixture: s = A-1x. One
possible computational set of steps to estimate ICs is as follows:

Step1: Normalise and Whitening:

1. Subtract the mean: xnorm=x −�̅�

2. Remove the correlations by Eigendecomposition to end up with zero covariance

and 1 variance: xw=(E𝐷 𝐸)x, Where, D is a diagonal matrix of eigenvalues,

every diagonal element is an eigenvalue of the covariance matrix, and E is an

orthogonal matrix of eigenvectors.
Step 2: Maximise Non-Gaussainty by Negative Entropy

3. A=(V𝐷 𝐸), where V is an unknown rotation matrix, that we need to solve for

it and A using the eigenvalues and eigenvectors. Solving for two unknown

iteratively by Lagrange multiplier for the constraints that the dot product of

transpose of W and itself is approximately equal to 1: 𝐴 𝐴≈1, and the Newton

iterations by randomly initialising W with any values, and iterate using an

objective function objFunc that aims to non-Gaussian maximisation such as tanh

and its derivative dObjFunc as follows:

4. w_new = ∑ X × objFunc(A . X) – ∑ dObjFunc(A . X) × A

Step 3: Define the convergence scheme:

1. A is initialised to a random variable

2. 𝐴 𝐴≈1 is the basis of orthogonality and indicates the convergence

3. Once the resulting matrix A is calculated, the dot product of it and the

whitened xw signal gives the sources s.

There are other algorithms to perform ICA such as infomax, FastICA, and JADE.

CHAPTER 2

27

Real-World Example:

ICA is important for Blind Source Separation (BSS) problems. A classical BSS problem is the
cocktail party problem (CPP), defined as having two microphones in a room in different
locations, while two people are talking simultaneously. The mixed-time-signals received at
both microphones are 𝑥 (𝑡) = 𝑎 𝑠 (𝑡) + 𝑎 𝑠 (𝑡)𝑎𝑛𝑑 𝑥 (𝑡) = 𝑎 𝑠 (𝑡) + 𝑎 𝑠 (𝑡),
such that aij are the weight parameters dependent on the distances between microphone i
and speaker j collected in matrix A, in this case, it is a 2x2 matrix but could be expanded to n
microphone and m sources problem. The aim is to estimate s1 and s2 from both equations
with only x1(t) and x2(t) being known. Check the Python code ICA_FOBI.ipynb for an audio
BSS example, followed by an image mixture separation example.

2.2.6 Linear Discriminant Analysis (LDA)

LDA is a supervised dimensionality reduction algorithm that works on labelled data to
discriminate between classes, unlike unsupervised PCA, which diagonalises the covariance
matrix to make data points independent of each other. The most straightforward Binary (2
classes) Linear Discriminant is based on the mean of both classes 𝜇 and their variance 𝑠 ,

creating a metric 𝐽 = , where k spans the features/columns assuming only two

features, i spans the classes (assuming two classes), and the discriminate becomes
identifying the value of k at which the highest value of 𝐽 is found. Then, taking the classes’

means as the threshold draws the line that separates both classes 𝑐 = . To generalise

for multiple features to draw a discriminant line equation, y=wx, we need to solve for w,
through the following steps:

1. Calculate a middle point of all n features from the means of both classes as a

vector, 𝑀 = , … ,

2. Calculate the covariance matrices of both classes, 𝑆 , 𝑆 and compute their

average 𝑆 = [𝑆 + 𝑆]

3. Solve for weights vector from the inverse of the average, 𝑤 = 𝑆 𝜇 +

𝜇

4. Identify the threshold c using the middle point, c=wm

5. For every new test sample x, solve for y=wx, if y > c, then x belongs to 𝑐1,

and when y < c, the sample belongs to 𝑐𝑠.

CHAPTER 2

28

Another method to divide the data into separate classes is to maintain two scatter matrices
for the input space: the within-class scatter Sw to maximise and the between-class scatter Sb
to minimise for a dataset X with M instances and C classes. The scatter matrices are
covariance matrices multiplied by the number of entities (Lu, Plataniotis and
Venetsanopoulos, 2014).

The steps to perform LDA using scatter matrices are as follows:

Step 1: Calculate the scatter matrices for the input space:

1. 𝑆 = ∑ 𝑥 − �̅� 𝑥 − �̅� and 𝑆 = ∑ 𝑀 (𝑥 − �̅�)(𝑥 − �̅�) , where �̅� =

∑ 𝑥 , is the class mean for entities belonging to the class Mc, and �̅� is the

feature column mean across all classes. The sum of these two scatter matrices is the
total scatter S for the dataset.

Step 2: Estimate the projection matrix into the output space:

2. The input space scatter-matrices are projected into the output space using projection
matrix U as follows:

S = U S U, and S = U S U and the Total scatter in the output space:
S = U S U

3. LDA aims to maximise the between-class scatter in the output space S , while
minimising the within-class scatter in the output space S by solving for U. This can be
done by using the trace of the scatter matrices and the inverse if it is singular:

𝑈 = argmax 𝑡𝑟(S S) = argmax 𝑡𝑟((U S U) U S U)

 It can also be done using any substitutions of S , or by using the determinants:

𝑈 = argmax
|S |

|S |
= argmax

|U S U|

|U S U|

𝑈 = argmax U S U, subject to U S U = 1.

4. This can be solved by Lagrange multiplier:𝜓 = U S U − λ(U S U − 1), then
differentiate with respect to u, and set = 0,

𝛿𝜓

𝛿𝑢
= S U − λS U = 0 → S U = λS U

which is the generalised eigenvalue problem.

Step 3: Get the highest C-1 eigenvectors to form U:

CHAPTER 2

29

5. The eigenvectors corresponding to the largest C-1 eigenvalues λ form the

columns of U.
Step 4: Project the test data into the new LDA output space:

6. Then data are projected like in PCA as y = U x.

The above approaches build discriminative classifiers by learning to discriminate the classes
from a training dataset, not how the data points are generated. A generative classifier uses
probabilistic methods to learn how points are generated in each class, applying Bayes
Theorem. LDA is implemented in Scikit learn Python packages using its generative model.
The LDA generative model assumes the class-conditional densities, 𝑓 (𝑥) for class k, are

Gaussian with a common covariance matrix so that 𝑓 (𝑥) =
() / | | / 𝑒

() (),

where the Gaussian is described using its mean and standard deviation, or covariance matrix
Σ. The function includes constant e, M is the number of features, and 𝜇 is means for class k.
Given 𝑁 as the number of entities in class k, such that the LDA classifier assumes that 𝜋 =

 is the maximum likelihood estimates (MLE) of 𝑓 (.), across all classes, i.e. 𝜋k is the

probability of class Y being k, P(Y = k). The 𝑓 (𝑥) predictors (for k=1,…,K) all share the same

covariance matrix 𝛴 =
∑ ∑ ()()

 but may have different means �̂� = ∑ .

The Bayes Theorem: 𝑌 = argmax 𝑃 (𝑌|𝑋) = argmax 𝑃(𝑋|𝑌)𝑃(𝑌), predicts the class 𝑌 of

test sample 𝑋. The generative LDA classifier satisfies: 𝑌(𝑥) = argmax
()

∑ ()
 .

LDA can separate multiple classes by training multiple classifiers to separate each pair of
classes and use voting between the classifiers to identify the class of a test sample, which
can be considered a basic multilinear model. Instead of using a linear equation, a quadratic
equation is used in QDA. The Bayesian Probabilistic models of LDA and QDA are
implemented in Scitkit-learn library, assuming Gaussian densities for 𝑃(𝑋|𝑌), while the
other generative model, such as Naive Bayes, assumes 𝑃(𝑋|𝑌) = ∏ 𝑃(𝑋 |𝑌) , such that
the features are independent conditional on Y. For more about Bayesian generative models,
read books such as (Sivia and Skilling, 2006), (Downey, 2013). Check the Python code (xxxx)
for an LDA example compared to PCA.

2.2.7 Canonical Correlation Analysis (CCA)

The CCA and the PLS (in the following section) algorithms consider mapping from two paired
datasets, x ∈ ℝ × and y∈ ℝ × . Learning the symmetric relationship between them is
performed by learning the Linear projections for both by maximising the correlations.

CHAPTER 2

30

Symmetric relationships mean both datasets are different views or representations of the
same entities. A classic example is audio and video datasets from the same individuals (Lu,
Plataniotis and Venetsanopoulos, 2014).

The steps to perform CCA are as follows:

Step 1: Define the covariance matrix of each dataset and the cross-covariance matrices:

1. Σ = ∑ (𝑥 − �̅�)(𝑥 − �̅�) , Σ = ∑ (𝑦 − 𝑦)(𝑦 − 𝑦)

Σ = ∑ (𝑥 − �̅�)(𝑦 − 𝑦) , Σ = ∑ (𝑦 − 𝑦)(𝑥 − �̅�) , note that Σ =

 Σ

Step 2: Find The correlations between the projections:

2. The pth pair of projections (𝑢 , 𝑢), 𝑟 = 𝑢 𝑥 , and 𝑠 = 𝑢 𝑦 such

that coordinate vectors 𝑤 = 𝑢 (𝑥 − �̅�) = 𝑟 , and 𝑧 = 𝑢 (𝑦 − 𝑦)

=𝑠 has the correlation 𝜌 =
()()

Step 3: Find the first projection pair 𝒖𝒙𝟏, 𝒖𝒚𝟏 such that 𝝆𝟏 is maximised similar to the
algorithm presented in the PCA section,

3. 𝑢 , 𝑢 = argmax
,

𝑢 Σ 𝑢 , subject to 𝑢 Σ 𝑢 = 1, and 𝑢 Σ 𝑢 = 1.

4. Using Lagrange Multipliers: 𝜓 = 𝑢 Σ 𝑢 − 𝜆 𝑢 Σ 𝑢 − 1 −

𝜇 (𝑢 Σ 𝑢 − 1)
5. Differentiate with respect to 𝑢 and 𝑢 , and set to 0:

 = Σ 𝑢 − 𝜆Σ 𝑢 = 0, then multiply 𝑢 on the left

= Σ 𝑢 − 𝜇Σ 𝑢 = 0, then multiply 𝑢 on the left

6. We have 𝑢 Σ 𝑢 − 𝜆𝑢 Σ 𝑢 = 0, and 𝑢 Σ 𝑢 − 𝜇𝑢 Σ 𝑢
7. Since we have 𝑢 Σ 𝑢 = 1, and 𝑢 Σ 𝑢 = 1, then we are 𝜆 = 𝜇 =

𝑢 Σ 𝑢 to maximise.

8. If Σ is non-singular, 𝑢 = 𝑢 , then we have: Σ Σ Σ 𝑢 = 𝜆 Σ 𝑢 ,
which is the generalised eigenvalue problem, such that 𝑢 is the Eigenvector
corresponding to the largest Eigenvalue

9. If Σ is non-singular, then we have: Σ Σ Σ Σ 𝑢 = 𝜆 𝑢 , and
Σ Σ Σ Σ 𝑢 = 𝜆 𝑢

Step 4: Find the following projections

CHAPTER 2

31

10. Each projection p should maximise the correlation 𝜌 by adding the zero correlation
constraints such as for p=2, w2 and z2 are uncorrelated with w1 and z1, and for later
steps p, wp and zp are uncorrelated with wq and zq, for 1<= q <= p-1

Step 5: Assemble the Projection Matrices

11. Projections matrices Ux ∈ ℝ × and Uy ∈ ℝ × columns are the calculated projection
pairs, respectively.

12. Make the projections to the dataset as xprojected = 𝑈 x, and yprojected = 𝑈 y.

Check the Python code in CCA_PLS.ipynb for a CCA example compared to PLS.

2.2.8 Partial Least Squares Analysis (PLS)

It is like CCA in mapping the symmetric relationship between two paired datasets, but by
maximising the covariance, not the correlation, and is useful when Σ and Σ are not
singular. In the scikit-learn Python package, this is implemented in the cross decomposition
module as PLSCanonical. Maximising the covariance between datasets is suitable when
modelling X as one dataset and Y as another dataset, such that the target is not a single
value but a vector of several targets as multilabel. PLS is also an acronym for “Projection to
Latent Structures” since it uses latent variables to identify the association between blocks of
observed variables.

The pth pair of projections (𝑢 , 𝑢) are the weight vectors that are estimated such that

coordinate vectors 𝑤 = 𝑢 (𝑥 − �̅�) = 𝑟 , and 𝑧 = 𝑢 (𝑦 − 𝑦) =𝑠 maximise the

sample covariance between 𝑤 , 𝑧 , which are the score vectors, forming the score

Matrices W and Z. This is calculated by: 𝑢 , 𝑢 = argmax
 , ()()

. The non-

linear iterative partial least squares (NIPALS) algorithm iteratively finds the dominant
Eigenvector similar to the power method. By deflating the X, and Y matrices, the algorithm
finds the subsequent dominant Eigenvector (Lu, Plataniotis and Venetsanopoulos, 2014).

The steps to perform PLS are as follows:

Step 1: Repeat Until Convergence:

1. Initialise Y-score vector 𝑧 with the first row of Y

2. Calculate the X-weight vectors: 𝑢 = ,

3. Calculate the X-score vector: w = X 𝑢

4. Calculate the Y-weight vector: 𝑢 =

CHAPTER 2

32

5. Update Y-score vector z = Y 𝑢

6. Repeat steps 1:5 until

< stopping criteria 𝜂, 𝑢 and 𝑢 are the

dominant eigenvectors of this round.

7. Calculate the X loading vector 𝑣 = , coefficients of regressing X on wp forming

matrix Vx

8. Calculate the Y-loading vector 𝑣 = , coefficients of regressing Y on zp forming

matrix Vy
9. Rank-one deflate both X and Y: 𝑋 ← 𝑋 − 𝑣 w and 𝑌 ← 𝑌 − 𝑣 z
10. Repeat steps 1:9 until ‖𝑋‖< stopping criteria 𝜂.

Step 2: Assemble the weight Matrices

11. Weight matrices Ux ∈ ℝ × and Uy ∈ ℝ × columns are the calculated projections pairs,
respectively.

12. Make the projections to the dataset as xprojected = 𝑈 x, and yprojected = 𝑈 y.

PLS can be used for regression when the relationship between X and Y is asymmetric, and
considering Y the response (outcome or dependent) on X (the predictor or the independent
dataset), such that the score vectors {wp} are good predictors of Y. The residual matrices
(the error terms) are 𝐸 , 𝐸 , such that 𝑋 = 𝑉 W + 𝐸 , and 𝑌 = 𝑉 Z + 𝐸 , assembled in
matrix E can be used to linearly approximate the relationship between W and Z, such that Z
= WD + E, and D are the regression coefficients calculated below. PLS for regression
performs the following steps:

Step 1: Repeat for p latent factors:

1. Calculate the X-weight vectors: 𝑢 = ,

2. Calculate the X-score vector: w = X 𝑢

3. Calculate the regression coefficient 𝑑 =

4. Calculate the X loading vector 𝑣 = , coefficients of regressing X on wp forming

matrix Vx
5. Rank-one deflate both X and Y: 𝑋 ← 𝑋 − 𝑣 w and 𝑌 ← 𝑌 − 𝑑 w

Step 2: Assemble the weight Matrix, loadings, and regression coefficients

6. Weight matrices Ux ∈ ℝ × columns are the calculated weights 𝑢 , the 𝑑 are the
diagonal elements of Matrix D∈ ℝ × , and the loading Matrix V columns 𝑣 .

PLS can also be applied as a supervised method by encoding Y as the class memberships.
This will be closely related to Fisher Discriminant Analysis (Binary LDA).

CHAPTER 2

33

2.2.9 Factor Analysis

The latent factors are latent variables that are not measured, but they are sometimes
planned in the design of the measured dataset or reconstructed from the dataset after
collection by grouping variables by their correlations. A group of observed variables will
have a high correlation among themselves and a low correlation with other observed
variables in other groups, such that each group will imply a different latent factor. The
principal components capture the highest variance in the dataset in the first component and
decreasing-order of variance in the following components. The main objective is to project a
high-dimensional dataset into a smaller dimension model for visualisation or compression
reasons. The PCA components are not interpretable as data objects themselves. The factors
are interpretable data that cannot be measured directly in one variable, and several
observed variables together represent one or more latent factor(s) (Brown, 2006).

Each measured indicator xi contributes to the factors being measured ηj with loading or
weight λij, forming the general equation:

xi = λi1η1 + λi2η2 + . . . + λimηm + εi

xi = εi + ∑ λ η

A single equation that relates the observed variables x to the latent variables/factors η and
the unique variance is: x = W xη +

That can be captured in matrix form as Σ = W ΨW + Θ , where Σ ∈ ℝ × is the
symmetric correlation matrix of d indicators X∈ ℝ , Wx ∈ ℝ × is the factor loadings matrix
containing m λ ∈ ℝ , Ψ∈ ℝ × is the symmetric correlation matrix of the factor
correlations, and Θε ∈ ℝ × is the diagonal matrix of unique variances ε.

Various algorithms can estimate the factors and their loading. The most predominantly used
are maximum likelihood (ML is most suitable to normally distributed datasets) and principal
factors (PF makes no data distribution assumptions). Other methods include but are not
limited to: weighted least squares, unweights least squares, generalised least squares,
imaging analysis, minimum residual analysis, and alpha factoring (Brown, 2006).

The diagonalisation of the covariance or correlation matrix always calculates all the
components at once. Also, the NIPALS method (Non-linear Iterative Partial Least Squares)
explained in the previous section, calculates the components stepwise and is much faster
than diagonalisation of the covariance matrix if only the first few eigenvalues are desired.

CHAPTER 2

34

Also, Probabilistic PCA (PPCA) also estimates W and Ψ iteratively, using the
Expectation.Maximisation (EM) algorithm (Burges, 2009).

Finding common factors in a dataset is often conducted in the exploratory model, in which
the Exploratory Factor Analysis (EFA) method estimate both the number of factors and the
loadings. EFA is like PCA, which is simpler to compute, accounting for the dataset’s variance.
EFA differ in considering the unique variance εi and explains the correlations among the
observed variables while accounting for measurement errors. EFA can also be used to
reconstruct the intercorrelations between the measured variables and a small set of latent
factors.

Real-Life Application: a single factor of depression cannot be measured directly. Observed
indicators, for example, can be scores for hopelessness, feelings of worthlessness/guilt,
psychomotor retardation, and sleep disturbance. This four-dimensional dataset X can
measure how they contribute to the depression latent factor η as follows:

x1 = λ11*η + 1

x2 = λ21*η + 2

x3 = λ31*η + 3

x4 = λ41*η + 4

Check the Python code FA.ipynb for another psychometric dataset FA example.

2.2.10 Non-negative matrix factorisation (NMF)

NMF extracts a set of sparse meaningful factors from dataset X of non-negative values. It is
a probabilistic model suitable for high-dimensional data. X∈ ℝ × is decomposed into W∈

ℝ × , and H ∈ ℝ × matrices with reduced dimensionality to rank r approximation. Matrix
W columns contain the basis features; basis features are persistent features in all the n data
points. Matrix H columns explain wherein X (coordinates) these bases are found and how
important they are to help reconstruct the dataset. In facial images X dataset of n images
and d pixels, the basis might be noses, eyes, hair, moustache, and other facial features. In
text dataset X of n document and d words, the basis W can be topics that are defined to
contain specific words, and H can be the importance of a word in the document. The rank r
optimisation works by: argmin

∈ℝ × , ∈ℝ ×

‖𝑋 − 𝑊𝐻‖ subject to W ≥ 0 and H ≥ 0. The partial

derivatives are:

∆ 𝐹 = 𝑊𝐻𝐻 − 𝑋𝐻 ≥ 0, such that 𝑊 ∘ ∆ 𝐹 = 0, and W ≥ 0

CHAPTER 2

35

∆ 𝐹 = 𝑊 𝑊𝐻 − 𝑊 𝑋 ≥ 0, such that 𝐻 ∘ ∆ 𝐹 = 0, and H ≥ 0

where ∘ is the component-wise product of two matrices.

The following generally are the steps performed to estimate W and H alternatively, such as
the Hierarchical alternating least squares (HALS) algorithm:

Step 1: Initialize W and H randomly

Step 2: Repeat For 𝓵 = 1, 2, . . . , r:

1. Update W(:, ℓ) such that the objective function decreases: W(: , ℓ) ←

argmin
(:,ℓ)

‖𝑋 − ∑ 𝑊(: , 𝑘)𝐻(𝑘, :) − 𝑊(: , ℓ)𝐻(ℓ, :) ℓ ‖ ,

2. Update H accordingly to continue decreasing the objective function while

maintaining the constraints:

3. Convergence is checked by: 𝐶(𝑊, 𝐻) = 𝐶 (𝑊) + 𝐶 (𝐻), where

𝐶 (𝑊) = ‖min(𝑊, 0)‖ + ‖min(∆ 𝐹, 0)‖ + ‖𝑊 ∘ ∆ 𝐹‖𝑓 for all constraints, and

𝐶 (𝐻) = ‖min(𝐻, 0)‖ + ‖min(∆ 𝐹, 0)‖ + ‖𝐻 ∘ ∆ 𝐹‖𝑓

Some regularisation is required to guarantee convergence. Detailed problems and research
outcomes on how to avoid them can be found in (Suykens et al., 2014).

Check the Python code NMF.ipynb for text mining NMF example compared with
MiniBatchNMF and Latent Dirichlet Allocation (LDA) as implemented by scikit-learn.

2.2.11 Other Factorisations

The literature presents a plethora of algorithms that serve different objectives and
constraints, and researchers will keep advancing the performance by addressing existing
problems. Some of the factorisation techniques that we did not discuss are as follows:

 LU factorization: A = LU;
o where L is the lower triangle and U is the upper triangle of matrix A. In the

Gaussian Elimination algorithm used in chapter one to solve a system of
equations Ax = b, we applied elementary row operations (ERO) to reduce a
matrix to an upper triangular matrix. This is composed of a forward
substitution Lz = b, and backward substitution, Ux = b.

 LU factorization with row pivoting: PA = LU;

 The Cholesky factorisation, A = LLT

 The QR factorisation, A ∈ ℝ × = QR;

CHAPTER 2

36

where Q ∈ ℝ × has the special property of being an orthonormal matrix with respect to
its columns, such that QTQ = I and R ∈ ℝ × is an upper triangular matrix. If m > n, a
reduced QR decomposition – or thin QR factorisation – can be
computed, i.e. Q ∈ ℝ × and R ∈ ℝ × .

 When a matrix is indefinite symmetric, there is a factorisation called the LDLT
(pronounce as L D L transpose) factorisation: A = LDLT ;
o where L is a unit lower triangular and D is diagonal. You may want to see if

you can modify the derivation of the Cholesky factorisation to yield an
algorithm for the LDLT factorisation (Geijn and Quintana-Ort´, 2008).

 Dictionary Learning has many algorithms and implemented in
sklearn.decomposition.DictionaryLearning.

2.2.12 Comparing Methods

You can notice that eigendecomposition Av = 𝜆𝐵𝑣 is the fundamental decomposition
technique that the most discussed algorithm reduces to, after considering the problem
objectives and constraints. Table 1 is adopted from (Lu, Plataniotis and Venetsanopoulos,
2014) with the extra methods added and a summary of objectives and limitations of
methods.

Table 1: Comparison of Linear Subspace Learning Methods

MethodMaximise A B v Objective Limitations

PCA Total scatter
(variation)

ST I u1 only for the
Gaussian data
representation
method.

Closed Formula
Exists.

First and second-order statistics:
mean and std, ignoring correlations
of higher statistics.

Assumes linear dataset.

Hard to interpret the PCs' relation to
data – not suitable for feature
extraction.

SVD Covariance
matrix

ATA U V Relates to data
well.

Singular values are
stable for all
matrices.

Useful for
compression.

CHAPTER 2

37

LDA Between-class to
within-class
scatter ratio

SB SW u1 Supervised Data
Disciminitive
method.

Suffer from high variance in SSS.

CCA Correlation 0 Σ

Σ 0

Σ 0
0 Σ

u
u Correlation

between two
symmetric datasets

Require the inverse of Σ , Σ ,
which can be solved by regularisation
or Cholesky decomposition.

Suffer from high variance in SSS.

PLS Covariance 0 Σ

Σ 0

𝐼 0
0 I

u
u Covariance

between
asymmetric
Datasets

Work well when
Σ , Σ are
singular.

Work well for a small number of
latent variables.

FA PLS and other
variations can
perform FA

0 Σ

Σ 0

𝐼 0
0 I

u
u Map Directly to

meaningful
unobserved data

ICA Iterative
Algorithm

 Works for non-
Gaussian data.

Higher-order
statistics: kurtosis
or negentropy.

Iterative methods.

ICs are not ordered, and the actual
number can not be estimated.

NMF Iterative
Algorithm

 Sparse Meaningful
features in high-
dimensional
datasets

Probabilistic model.

Since the Eigendecomposition is at the heart of dimensionality reduction methods,
approximating this decomposition for a submatrix of the given dataset can speed up the
training. The generalised Nystr�̈�m method does this by a quadrature method that solves an
integral equation by replacing the integral with a representative weighted sum. For a
dataset X ∈ ℝ , the density p(x), is represented by the integral form, which reduces to a
quadrature rule as follows:

∫ 𝑘(𝑥, 𝑦)𝑢(𝑦)𝑝(𝑦)𝑑𝑦 = 𝜆𝑢(𝑥) ≈ ∑ 𝑘(𝑥, 𝑥)𝑢(𝑥)

CHAPTER 2

38

When the approximate equation on the right-hand side is applied to the sample points, it
becomes a matrix equation 𝑘 𝑢 = 𝑚𝜆𝑢 , where u is (ui ≡ u(xi)) is the eigenfunction for
some chosen m points such that the rank r of X (number of linearly independent columns) is
≫ 𝑚, and 𝑘 means indices mm and that K ∈ Mm is a submatrix of X, (with components Kij
≡ k(xi,xj). When m=r, then the approximation is exact. The eigenvalues 𝜆 approximately
scale with the number of points chosen m. The full steps of solving the Nystr�̈�m method
exact and approximate variant (dropping the requirement that eigenvectors be orthogonal
to each other) are explained in (Burges, 2009). The point to emphasise is that the
projections of a mapped test point along principal components in a kernel feature space
(the submatrix K) are equal to the expression for the approximate eigenfunctions evaluated
at the new point, computed according to the approximate quadrature rule equation
mentioned above. This mapping to a submatrix approximates the full eigenfunctions at all
points. The main objective of the following section is to find Manifolds of lower dimensions
that approximate the points in a dataset in the higher dimension.

2.3 Manifolds

Data in high dimensional spaces tend to be sparse, with most vectors containing zeros. This
makes most vectors orthogonal to each other and equidistant, which means there is no
structure to learn. These properties disable distance-measure-based dimensionality
reduction algorithms to identify the linear subspace efficiently. Consequently, any
regression or classification algorithm estimating the decision line or hyperplane in a higher
dimension will fail to draw a line between equidistant points. Learning a Manifold M that
contains the data points of the given dataset represented in a lower dimension than the
input higher dimension space is a non-linear unsupervised dimensionality reduction
approach that reduces the computation cost and increases the accuracy of the ML
algorithm. In Natural Language Processing (NLP), words must be numerically encoded. If we
encode all words in a dictionary, this might be sparse, and not all words will be used in a
specific document or dataset. The word embeddings (manifold) from a given corpus can be
learned using deep learning layers and can be constructed by statistical methods,
maintaining closer codes for semantically close words.

This learning of the points' relationships to their neighbours in the manifold does not need
to be using a similar relationship, equation or geometric shape. This would create a grid of
some sort of basis along each dimension, creating a dimensionality curse. On the contrary,
the manifold can be learned using several relationships in different neighbourhoods
embedded in the manifold. For example, instead of learning the same unified principal
components of a dataset and projecting the dataset onto the initial principal components
for reduction, a manifold learning algorithm would partition the data into closer

CHAPTER 2

39

neighbourhoods. Then, the algorithm would learn the principal components for each
neighbourhood independently and project the relevant points onto their initial PCs that are
different from the other neighbourhood, then form a manifold of all projections. Similar to
the power method in estimating the Eigenvector, starting from random embedding and
optimising it is a popular manifold learning approach. Check Python notebook
Manifolds.ipynb for a comprehensive example using MNIST dataset comparing manifolds
created by linear unsupervised PCA, supervised LDA and QDA, and manifold learning
algorithms, MDS, Isomap, LLE, t-SNE, and Spectral Embedding.

2.3.1 Multidimensional Scaling (MDS)

MDS searches for a measure of dissimilarity between each pair of data points in X ∈
ℝ × to map them to a low dimensional Euclidean Space, forming a squared distances
matrix to be used for visualisation or dimensionality reduction and feature extraction. This
can be performed using similar steps to the following:

Step 1: Assign some points to coordinates in n-dimensional space.

1. Choose N points to be 2D or 3D to be able to visualise and easily modelled. The
coordinates’ orientation is arbitrary and depends on the features’ nature. For example,
two coordinate axes representing north/south and east/west are suitable for modelling
a dataset containing map locations.

Step 2: Calculate the symmetric similarity matrix A using a suitable distance measure for
all pairs of points.

2. The Euclidean distance is the Euclidean norm ‖. ‖ that is based on the Pythagorean
theorem becomes more complicated for n-dimensional space (see
https://hlab.stanford.edu/brian/euclidean_distance_in.html). For two pairs of data

points x, y ∈ ℝ: dist(x, y) = x-y, for x, y ∈ ℝ , dist(x, y) = 𝑥 − 𝑦 , and for x, y ∈ ℝ ,

dist(x, y)= ∑ (𝑥 + 𝑦). This results in the similarity matrix A whose ij-th element is

𝑥 − 𝑥 for some 𝑥 , 𝑥 ∈ ℝ . Other distance metrics can be used. Also, non-metric

scaling in ordinal MDS can be performed by using a given rank ordering of the original
data points in this matrix that is minimised using a suitable cost function of the
difference between the embedded squared distances and some monotonic function of
the dissimilarities.

Step 3: Find the lower-dimensional embedding:

CHAPTER 2

40

3. The Schoenberg theorem states that the class of symmetric matrices A ∈ ℝ × such

that Aij ≥ 0 and Aii = 0 ∀i, j. Then �̅� ≡ −PAP is posi ve semi-definite if and only if A is a

distance matrix (with embedding space ℝ for some d). Given that A is a distance

matrix, the minimal embedding dimension d is the rank of �̅�, and the embedding

vectors are any set of Gram vectors of �̅�, scaled by a factor of
√

 .

a. Defining the projection matrix 𝑃 ≡ (1 – e𝑐), for any c∈Rm such that 𝑒 c = 1, then
for any conditionally negative definite (CND) matrix A, the matrix −𝑃 𝐴𝑃 is
positive semi-definite (and hence a dot product matrix). We can map a distance
matrix A to a dot product matrix K by using 𝑃 in the above manner for any set of

numbers ci that sum to unity. Again, this reduces to Eigendecomposition �̅�𝐸 =

 𝐸𝛬, where �̅� is the positive semi-definite matrix that we need to solve for, E be
the matrix of column eigenvectors e(α) (labelled by α), ordered by eigenvalue λα, so
that the first column is the principal Eigenvector and Λ is the diagonal matrix of

eigenvalues. Defining the matrix 𝐸 ≡ 𝐸√𝛬, we see that the Gram vectors are just

the rows of 𝐸.

b. If �̅� ∈ ℝ × has rank r ≤ n, then the final n − r columns of 𝐸 will be zero, and we
have directly found the r-dimensional embedding vectors that we are looking for.

If �̅� ∈ ℝ × is full rank, but the last n − p eigenvalues are much smaller than the
first p, then it’s reasonable to approximate the ith Gram vector by its first p

components 𝜆 �̃�
() , α = 1, …, p, and we have found a low dimensional

approximation. MDS, Laplacian eigenmaps, and spectral clustering perform this
latter approach of removing the last few components. The unexplained squared
residuals measure the quality of the approximation. Thus the fraction of the

“unexplained residuals” is ∑
∑

, in analogy to the fraction of

“unexplained variance” in PCA.
Step 4: Compare the similarity matrix with the original input matrix by evaluating the
stress function.

4. Stress is a goodness-of-fit measure based on differences between predicted and actual
distances. In the original MDS paper (Kruskal, 1964), it was mentioned that fits close to
zero are excellent, while anything over 0.2 should be considered “poor”. More recent
authors suggest evaluating stress based on the quality of the distance matrix and how
many objects are in that matrix.

Step 5: Adjust coordinates, if necessary, to minimise stress by repeating the above steps.

CHAPTER 2

41

The complexity of MDS is reduced by using a Landmark MDS algorithm (Borg, Groenen and
Mair, 2013).

2.3.2 Isometric Feature Map (Isomap)

MDS maps the dataset to a lower-dimensional embedding such that the data points are
isotropically represented in the lower space (maintaining equivalent distances) without
modelling the underlying manifold. Isomap and Locally Linear Embedding are methods to
model the lower dimensional manifold without keeping the equivalent distances constraint.
To preserve the non-linear structures in the dataset, Isomap assumes that the data points lie
on a curve and not a straight line, and instead of measuring the dissimilarity matrix between
data points, it measures the distance along the curve between the two points. It accounts
only for large distances along this curve, even if the two points are close in ℝ . The basic
idea is to construct a graph whose nodes are the data points, where a pair of nodes are
adjacent only if the two points are close in ℝ , and then to approximate the geodesic
distance along the manifold between any two points as the shortest path in the graph,
computed using the Floyd algorithm or the faster Dijkstra’s algorithm with Fibonacci heap
(Qu and Cai, 2017); and finally to use MDS to extract the low dimensional representation (as

vectors in ℝ , 𝑑 ≪ 𝑑) from the resulting matrix of squared distances. Isomap does not

provide a direct mapping function: Ι: ℝ → ℝ .

2.3.3 Locally Linear Embedding (LLE)

LLE models the manifold by treating it as a union of linear patches, in analogy to using
coordinate charts to parameterise a manifold in differential geometry. Suppose X ∈ ℝ ×

with each point xi ∈ℝ has a small number of close neighbours indexed by the set N(i) up to

n neighbours, and let yi ∈ℝ be the low-dimensional representation of xi. The idea is to
express each xi as a linear combination of its neighbours and then construct the yi so that
they can be expressed as the same linear combination of their corresponding neighbours
(Ghojogh et al., 2020). Similar steps to the following can achieve this:

Step 1: Find the W’s ∈ ℝ × that minimises the sum of the reconstruction errors

1. The reconstruction error: 𝐸 ≡ 𝑥 − ∑ 𝑊 ,∈ () 𝑥 that is invariant of global

translation, which creates the constraint: ∑ 𝑊 ,∈ () = 1 ∀𝑖. It should also be invariant

of data scaling, rotation, and/or reflection.
2. This is achieved by minimising the following objective function:

CHAPTER 2

42

𝐹 ≡ 𝐹 ≡
1

2
𝑥 − 𝑊 ,

∈ ()

𝑥 − 𝜆 (𝑊 ,

∈ ()

− 1)

3. Differentiate each 𝐹 with respect to 𝑊 , , and require that 𝑊 , vanishes, and set to

zero.

Step 2: Find a set of eigenvectors yi ∈ ℝ

4. Perform Eigendecomposition of the product of two sparse matrices (1 − 𝑊) (1 −

 𝑊) ∈ ℝ with the smallest eigenvalues guarantees that the y is zero mean (since they
are orthogonal to e).

5. This is achieved by minimising the following objective function:

𝐹 =
1

2
𝑦 − 𝑊 , 𝑦 −

1

2
𝜆 (

1

𝑚
𝑌 𝑌 − 𝛿)

6. Differentiate each 𝐹 with respect to Ykδ and choosing λαβ = λαδαβ ≡ Λαβ gives the matrix
equation: (1 − 𝑊) (1 − 𝑊)𝑌 = 𝑌Λ

LLE tend to create a dense manifold in the centre, with various emerging rays. This is
justified by the LLEs approach to learning the multilinear function from a set of simpler
linear functions, making it suitable for simple structures in smaller datasets.

2.3.4 t-distributed Stochastic Neighbor Embeddings
(t-SNE)

t-SNE represents a dataset as a t-distribution or normal distribution of smaller sizes. It is
almost like a neural network being trained using a stochastic gradient descent algorithm to
minimise the entropy metric. It is an unsupervised approach that clusters that data points
into local groups of neighbourhoods and focuses on learning about their local structures
than unfolding them. It is an efficient manifold learning algorithm for multi-scale datasets
with complex structures and multiple manifolds. However, it is computationally expensive
compared to the other manifold learning algorithms.

2.3.5 Spectral Graph decomposition: Spectral
Clustering

A simple mapping from each data point in a dataset to a node in an undirected graph G, and
apply minimum spanning tree or nearest neighbour algorithm to fill the adjacency matrix

CHAPTER 2

43

Wij, with a similarity measure between node i and node j. The normalised Laplacian matrix

for any weighted, undirected graph is defined by 𝐿 ≡ 𝐷 𝐿𝐷 , where Lij ≡ Dij − Wij and Dij
≡ δij(∑ W). L is positive semi-definite, and so is the normalised Laplacian. The spectral
Graph theory states that the graph spectrum properties defined by the eigenvalues of its
Laplacian, characterise the global graph properties as follows:

 A complete graph (that is, one for which every node is adjacent to every other node)

has a single zero eigenvalue, and all other eigenvalues are equal to .

 If G is connected but not complete, its smallest non-zero Eigenvalue is bounded
above by unity.

 The number of zero Eigenvalues is equal to the number of connected components in
the graph, and in fact, the spectrum of a graph is the union of the spectra of its
connected components.

 The sum of the eigenvalues is bounded above by m, with equality if G has no
isolated nodes.

In light of these results, it seems reasonable to expect that global properties of the data

— how it clusters or what dimension manifold it lies on — might be captured by properties
of the Laplacian. Both Laplacian Eigenmaps and Spectral Clustering manifold learning
methods apply spectral graph theory to model the lower-dimensional manifold a dataset
lives in. Clustering generally reduces the dimensionality of the number of data points to the
number of clusters of similar structural features at its largest scale. Partitioning a graph into
two disjoint clusters of nodes requires removing arcs such that the cut is defined as the sum
of removed arcs weights. The minimum cut implies the maximum dissimilarity between the
clusters. Each node is labelled by zi = 1 for nodes in one cluster and zi = −1 for nodes in the

other cluster. The solution to the normalised min-cut problem is given by:min such that

yi ∈ {1, −𝑏} and 𝑦 𝐷𝑒 = 0, where y ≡ (e + z) + b(e − z), and b is a constant that depends on
the partition. The following steps are generally followed:

Step 1: Weighted Graph Construction.

1. Transform the raw input data into graph representation using affinity (adjacency)
matrix representation A.

Step 2: Graph Laplacian Construction.

2. Unnormalised Graph Laplacian is constructed as L = D - A for and normalised one as

𝐿 ≡ 𝐷 (𝐷 − 𝐴)𝐷
 Step 3: Partial Eigenvalue Decomposition.

CHAPTER 2

44

3. Eigenvalue decomposition is done on graph Laplacian: Ly = λDy
4. The clustering is achieved by thresholding a single eigenvector yi so that the nodes are

split into two disjoint sets. The dimension reduction is achieved by treating the element
yi as the first component of a reduced dimension representation of sample xi.
Otherwise, a simple clustering algorithm such as K-means can be applied to the
reduced dimensionality dataset and is observed to perform much better than on the
full dataset.

2.4 Mapping to the Higher Dimensions

The estimated decision line/hyperplane function needs to shatter the dataset's N points, i.e.
the dataset is separable by the classifier. Figure 3a) illustrates the classifications of N=3
points ∈ ℝ classified into blue (1) and white (-1) classes. All possible assignments of labels
(all random datasets that can be obtained) are 23=8 different possible datasets. The figure
shows the estimated decision line for all possible datasets as a set of functions such as f(x,
w) to separate the classes. In ℝ it is possible to find three points that this set of functions
can shatter, but it is not possible to find four. This is measured by the Vapnik Chervonenkis
(VC) dimension as defined below. The set of oriented lines in ℝ is three. Figure 3b) shows
how a given set of N=4 points ∈ ℝ are not shattered by the function f(w, x) = sine (wx),
which generally has an infinite VC dimension for being able to shatter a subset of the set {2-

m| m ∈ ℕ}. This is because these points are equally spaced and labelled in this order.

CHAPTER 2

45

Figure 3a) Three points in ℝ2that shattered by decision lines function.b) Four points that cannot be
shattered by {sin(wx)}, despite infinite VC dimension by the function set.

2.4.1 Support Vector Machine (SVM)

SVM estimates the decision line using a convex quadratic programming algorithm. Linear
programming minimises or maximises a linear function subject to defined constraints, such
as solving for minimum weights to satisfy the classification or regression of a given dataset,
given regularisation constraints and others. A quadratic programming optimisation problem
is a form of non-linear programming involving a quadratic convex objective function, and
the points that satisfy the required constraints also form a convex set. Any linear constraint
defines a convex set, and a set of N simultaneous linear constraints defines the intersection
of N convex sets, which is also a convex set. For a labelled dataset {xi, yi} i from 1 to N, y ∈
{1, -1}, and xi ∈ ℝ , the optimisation aims to find the weights/parameters for the separating
hyperplane that separates the positive classes from the negative classes. For the linearly
separable dataset, a possible set of steps are as follows:

a)

b)

CHAPTER 2

46

Figure 4: Maximum-margin hyperplane and margin for an SVM trained on two classes with x ∈ ℝ .
Samples on margins are called support vectors.(Larhmam, 2018)

Step 1: the geometric preliminaries of the algorithm to identify the optimisation
requirements:

1. Generally, any data point x which lies on the hyperplane satisfies wx + b = 0, where

w is normal to the hyperplane, | |

‖ ‖
 is the perpendicular distance from the

hyperplane to the origin, and ‖𝑤‖ is the Euclidean norm of w. But in SVM, we need
to find the hyperplane that maximises the margin between the closest points from
both classes. Therefore, no x points should fall on the separating hyperplane.

2. To achieve this, we need to identify two hyperplanes, each one passes through the
support vectors (points x closest to the hyperplane from both directions). Therefore,
all data points support the following constraints:

a. wxi + b ≥ +1 for yi = +1, these points lie on the hyperplane H1: wxi + b = 1

with normal w, and perpendicular distance from the origin = | |

‖ ‖

b. wxi + b ≤ -1 for yi = -1, these points lie on the hyperplane H2: wxi + b = -1

with normal w, and perpendicular distance from the origin = | |

‖ ‖

3. Let d+ (d-) be the shortest distance from the separating hyperplane to the closest
positive (negative) example, such that the margin of the separating hyperplane is
equal to d+ + d-. No data points fall between H1 and H2.

4. To maximise the margin between H1 and H2 hyperplanes, we need to minimise
‖𝑤‖ subject to the combined constraints above as: yi (wxi + b) - 1 ≥ 0 ∀𝑖, such that

d+ = d- =
‖ ‖

, and the margin between H1 and H2 =
‖ ‖

.

Step 2: Apply the Lagrangian optimisation formulation

CHAPTER 2

47

5. The Primal Lagrangian equation adds a Lagrange constant for every data point,
checking if it is a support vector α > 0, or not α = 0 if it lies on one of the

hyperplanes. The equation becomes: 𝐿 = ‖𝑤‖ − ∑ α y (x . w + b) +

∑ α
6. We have two sets of constraints forming a Wolfe dual problem:

a. Minimise LP with respect to w and b, subject to the constraint that the
derivatives of LP with respect to all the α vanish, all subject to the
constraints α ≥ 0.:

b. Maximise LP with respect to α , subject to the constraints that the gradient
of LP with respect to w and b vanish, and subject also to the constraints that

the α ≥ 0: 𝑤 = ∑ α y x
c. A mild constraint to make b=0, will make all hyperplanes pass through the

origin and reduce the degree of freedom by one: ∑ α y = 0

d. Now the Dual Lagrangian equation is: 𝐿 = ∑ α − ∑ α α y y x . x,

subject to the mild constraint in 6.c. by adding an extra Lagrange constant 𝜆.
e. We can use the Hessian Hij = yiyjxi . xj , to formulate the Dual Lagrangian

equation is: 𝐿 = ∑ α − ∑ α H α, − 𝜆 ∑ α y

7. Differentiate with respect to w and b:

a. = (Hα) + 𝜆y = 1 ∀𝑖 = 1, … l , one for each Lagrangian constraint.

b. = w − ∑ α y x = 0 for v=1, …d

c. = − ∑ α y = 0

Toy examples of the linearly separable data are “AND”, and “OR” are shown in Figure 5. The
“XOR” dataset is not linearly separable. One solution requires two separation 1-D lines
processed in 2 layers, and one class spans two areas. Another solution presented in Figure 6
is to map the dataset to a higher dimension, in which it will be separable linearly; for
example, a 2-D plane separates the “XOR” dataset after mapping it to ℝ using the following
mapping function:

Φ(
x
x) =

x
x

x x
, such that:

Φ(0, 0) = (0, 0, 0)

Φ(0, 1) = (0, 1, 0)

Φ(1, 0) = (1, 0, 0)
Φ(1, 1) = (1, 1, 1)

CHAPTER 2

48

Figure 5: Linearly Separable toy examples in the AND and OR functions. The XOR function is not linearly
separable and requires 2 1-D lines processed in 2 Layers

Figure 6: Mapping the XOR dataset to a higher dimension here ℝ , enable it to be linearly separable by 2-D
plane as shown

2.4.2 Kernel Trick

The following concepts need to be understood first about the measure of data separability
given classifier functions in order to understand the non-linearly separable dataset: VC
Dimension, and Hilbert Spaces, in which a non-linear dataset in the low dimension can be
separable in the higher dimension.

The Vapnik Chervonenkis (VC) dimension is a non-negative integer property that measures
the ML algorithm flexibility to learn a decision line for a large set of points of any possible
labelling. The ML algorithm produces a set of functions H= {f(w)} (w is the estimated vector
of weights/parameters for different datasets and not a specific value for w that makes a
function a particular function for a particular dataset). It can be defined for various classes
of function f (different algorithms such as different complexity, higher polynomial or radial
basis functions). Here we will only consider functions that correspond to the two-class
pattern recognition case so that f(x, w) ∈ {1, -1} ∀𝑥, 𝑤. A given set C of N points labelled in
all possible 2N ways are said to be shattered by the ML algorithm when for each labelling, a
member of the set {f(w)} can be found that correctly assigns those labels. The intersection of

CHAPTER 2

49

sets H and C is defined as the following set family: 𝐻 ∩ 𝐶 = {ℎ ∩ 𝐶: ℎ ∩ 𝐻}. C is shattered by
H, if 𝐻 ∩ 𝐶 contains all subsets of C: |𝐻 ∩ 𝐶| = 2| |. The VC dimension for the set of
functions H is defined as the largest cardinality of sets (training points) that can be shattered
by it (correctly classified without errors). VC dimension is ∞ if it is too large. Note that if the
VC dimension is h, then there exists at least one set of h points that can be shattered, but in
general, it will not be true that every set of h points can be shattered (Burges, 1998). The VC
dimension of a finite classification model, which can return at most 2d different classifiers, is
at most d, depending on the structure of the model (chosen class of the function).
Generally, some bounds are proven on the different dimensionalities and classifiers:

 A constant classifier (with no parameters), its VC dimension is 0 since it cannot
shatter even a single point.

 A single-parametric threshold classifier on real numbers; i.e., for a certain
threshold w, the classifier f(w) returns one if the input number is larger than w
and 0; otherwise, the VC dimension of f(w) is one because: it can shatter a single
point, but it cannot shatter any set of two points.

 A single-parametric interval classifier on real numbers; i.e., for a certain
threshold w, the classifier f(w) returns one if the input number is within the
interval w and 0; otherwise, then the VC dimension of f(w) is two because: it
can shatter some sets of two points, but it cannot shatter any set of three
points.

 In a line classifier model (such as regression and perceptron), for each pair of
distinct points, there is one line that contains both of them, lines that contain
only one of them, and lines that contain none of them, so every set of size two
is shattered. The line should separate positive data points from negative data
points. There exist sets of 3 points that can indeed be shattered using this
model (any 3 points that are not collinear can be shattered). However, no set of
4 points can be shattered because they can be partitioned into two subsets with
intersecting convex hulls, so it is impossible to separate one of these subsets
from the other. Thus, the VC dimension of this particular classifier is 3. This is
the example shown in Figure 3a).

 A k-nearest neighbour with a k=1 classifier has infinite VC dimension and zero
prediction error as, eventually, all points will be learned.

 A single-parametric sine classifier on real numbers; i.e., for a certain threshold
w, the classifier f(w) returns one if the input number x has sine (wx) > 0 and 0
otherwise, then the VC dimension of f(w) is infinite because: it can shatter a
finite subset of the set {2-m| m ∈ ℕ}. Figure 3b) shows an example of a set of

CHAPTER 2

50

points that are not shattered by this function to emphasise that not every set of
cardinality equal to the VC dimension of a classifier will be shattered.

Hilbert Space ℋ is a generalisation of the Euclidian space in the infinite dimension. More
details will be explained in chapter five. In the infinite dimension, the inner product in step
6.d in the SVM linear solution steps above, (x . x) can be performed after mapping both
vectors to the higher dimensions using a mapping function: Φ: ℝ → ℋ, where ℋis an
infinite dimension and ℝ is considered in the ℒ as a lower dimension. The algorithm would
do the dot products as (Φ(x). Φ(x)) everywhere a lower-dimensional dot product (x . x)
is applied. Possible mappings to ℝ are as follows:

Φ(
x
x) = √2

x
x x

x

, or Φ(
x
x) =

√

(x − x)
2x x

(x + x)

Or a possible mapping to ℝ :

Φ
x
x =

⎣
⎢
⎢
⎡

x
x x
x x

x ⎦
⎥
⎥
⎤

We can replace the mapping with a Kernel function Κ x , x = (Φ(x). Φ(x)) that
produces the same result without explicitly mapping every vector in the dataset or even
defining a specific mapping. This will be further explained in chapter five while discussing
the representer theorem and how it reduces searching the large space ℋ to just finding the
optimal values of the m coefficients 𝛼 , … , 𝛼 of x , … , x with each x a vector of the
features. Example Kernel functions are:

 Κ x , x = x . x + 1 , results in a classifier polynomial equation of degree = p.

 Κ x , x = 𝑒 , results in a classifier Gaussian radial basis function (RBF)

equation.

 Κ x , x = tanh 𝜅x . x − 𝛿 , results in a particular kind of two-layer sigmoidal

neural network.
This requires that the Hilbert Space Higher dimension ℋ defines an inner product (not just
the scalar dot product) such that any Cauchy sequence of points (that grows very close as
the sequence progresses less than a given small positive distance) converges to a point in
the space.

CHAPTER 2

51

Mercer’s condition: The kind of Kernel functions that define a dot product in some infinite
space should conform with Mercer’s condition, which states that there exists a mapping Φ
and an expansion such that:

Κ(𝑥, y) = ∑ Φ(x) Φ(y) if and only if, for any g(x) such that ∫ 𝑔(𝑥) 𝑑𝑥 is finite. Then,
∫ Κ(𝑥, y)𝑔(𝑥)𝑔(𝑦) 𝑑𝑥𝑑𝑦 ≥ 0. Therefore, any kernel satisfies Mercer’s condition if it is of
the form Κ(𝑥, y) = ∑ 𝑐 (𝑥. 𝑦) , where the cp are positive real coefficients, and the
series is uniformly convergent. Using such kernel produces a Hilbert Space Higher dimension

ℋof the dimension= the combination 𝐶(𝑑 + 𝑝 − 1, 𝑝) = 𝐶
𝑑 + 𝑝 − 1

𝑝
=

()!

(!()!)
 . For

example, for a degree p = 4 polynomial, and for images data consisting of 16 by 16 pixels
(d=256), dim(ℋ) is 183,181,376.

Python notebook Classification_Linear_NonLinear.ipynb compares a number of classification
algorithms on different types of datasets. It shows clearly the linearly separable datasets
and the non-linearly separable ones classified by different SVM kernel functions and other
linear and non-linear algorithms.

References

Borg, I., Groenen, P.J.F. and Mair, P. (2013) Applied multidimensional scaling. Berlin London:
Springer (SpringerBriefs in statistics).

Brown, T.A. (2006) Confirmatory factor analysis for applied research. New York: Guilford
Press (Methodology in the social sciences).

Burges, C.J.C. (1998) ‘A Tutorial on Support Vector Machines for Pattern Recognition’,
SUPPORT VECTOR MACHINES, 2, pp. 121–167.

Burges, C.J.C. (2009) ‘Dimension Reduction: A Guided Tour’, Foundations and Trends® in
Machine Learning, 2(4), pp. 275–364. Available at: https://doi.org/10.1561/2200000002.

Carter, T.A. (1995) Linear Algebra, An Introduction to Linear Algebra for Pre-Calculus
Students. Rice University.

Deisenroth, M.P., Faisal, A.A. and Ong, C.S. (2019) Mathematics for Machine Learning.
Cambridge University Press.

Downey, A. (2013) Think Bayes. First edition. Sebastopol, CA: O’Reilly.

Farrell, P. (2020) The statistics and calculus workshop a comprehensive introduction to
mathematics in Python for artificial intelligence applications. Available at:

CHAPTER 2

52

http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781800208360
(Accessed: 25 October 2021).

Geijn, R. van de (2012) ULAFF: Linear Algebra: Foundations to Frontiers. Available at:
http://www.ulaff.net/ (Accessed: 6 March 2021).

Geijn, R.A. van de and Quintana-Ort´, E.S. (2008) The Science of Programming Matrix
Computations. www.lulu.com. Available at:
http://z.cs.utexas.edu/wiki/LA.wiki/books/TSoPMC/.

Ghojogh, B. et al. (2020) ‘Locally Linear Embedding and its Variants: Tutorial and Survey’.
arXiv. Available at: http://arxiv.org/abs/2011.10925 (Accessed: 6 September 2022).

Kruskal, J.B. (1964) ‘Nonmetric multidimensional scaling : a numerical method.’, 29(b), pp.
115–130.

Larhmam (2018) Maximum-margin hyperplane and margin for an SVM trained on two
classes. Samples on margins are called support vectors. Available at:
https://commons.wikimedia.org/wiki/File:SVM_margin.png#metadata (Accessed: 2
November 2021).

Leskovec, J., Rajaraman, A. and Ullman, J.D. (2014) Mining of Massive Datasets. Second
edition. Cambridge: Cambridge University Press.

Lu, H., Plataniotis, K.N. and Venetsanopoulos, A.N. (2011) ‘A survey of multilinear subspace
learning for tensor data’, Pattern Recognition, 44(7), pp. 1540–1551. Available at:
https://doi.org/10.1016/j.patcog.2011.01.004.

Lu, H., Plataniotis, K.N. and Venetsanopoulos, A.N. (2014) Multilinear subspace learning:
dimensionality reduction of multidimensional data. Boca Raton, Florida: CRC Press/Taylor &
Francis Group (Chapman & Hall/CRC machine learning & pattern recognition series).

Qu, T. and Cai, Z. (2017) ‘An improved Isomap method for manifold learning’, International
Journal of Intelligent Computing and Cybernetics, 10(1), pp. 30–40. Available at:
https://doi.org/10.1108/IJICC-03-2016-0014.

Sivia, D.S. and Skilling, J. (2006) Data analysis: a Bayesian tutorial. 2nd ed. Oxford ; New
York: Oxford University Press (Oxford science publications).

Suykens, J.A.K. et al. (eds) (2014) Regularization, optimization, kernels, and support vector
machines. ROKS, Boca Raton London New York: CRC Press, a Chapman & Hall book
(Chapman & Hall/CRC machine learning & pattern recognition series).

VON HILGERS, P. and LANGVILLE†, A.N. (no date) ‘THE FIVE GREATEST APPLICATIONS OF
MARKOV CHAINS’. Available at: http://langvillea.people.cofc.edu/MCapps7.pdf.

CHAPTER 2

53

