
 

 

Chapter 3: Geometry & Algebra of Tensors 

Chapter two discussed linear subspace learning using projective and manifold learning 
methods using mapping functions. The main emphasis was to use linear algebra to project 
to a lower-dimensional space. The mapping function is mainly dependent on the 
eigendecomposition of the dataset. Other approaches learn a manifold that belongs to a 
lower dimension using a submatrix by defining neighbourhood or adjacency between data 
points. Projecting the data points to a higher dimensional space in which they will be linearly 
separable is another method to apply when data are not linearly separable in their current 
dimension. The Kernel trick enables the dot product to be performed in Hilbert space 
without doing the actual mapping.   

This chapter starts with a reminder of the intuition of data analysis in higher dimensional 
spaces and their applications. Section two will continue the multilinear algebra that started 
in tensor operations in chapter one and by the manifold learning and Hilbert space mapping 
in chapter two. Multilinear algebra will be explained in two subsections. The first subsection 
introduces non-linear algebra as expressed in non-Euclidean spaces using hyperbolic and 
elliptic geometry, defining curves as conic sections, such as circles, ellipses, parabolas and 
hyperbola. The section continues to solve a system of equations employing these non-linear 
shapes. The second subsection will introduce Differential geometry on Manifolds using 
coordinate-free approaches. This subsection mainly focuses on the preliminaries to 
understand exterior derivatives using differential forms and their projections in many 
subspaces of any higher space ℝ . This chapter explains another definition of a subset of 
tensors: differential forms as skew-symmetric (or anti-symmetric) covariant tensors. This 
leads to the third subsection in which tensors on Manifolds are explained. Then Multi-linear 
subspace learning (MSL) algorithms as a generalisation of the LSL in chapter two will be 
presented in the third section.  

The chapter might look full of equations. However, the proofs, derivation and properties of 
each equation and consequent identities are omitted, although they are usually used in 
simplifying equations and computations. The aim is to familiarise the reader with the logical 
flow of these topics and how they build together and used in machine learning algorithms. 
Visualisations from interesting books have been used, and python libraries in which these 
mathematical operators are implemented are provided. These are usually used at the 
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bottom of the stack of a machine learning algorithm. Understanding what is happening 
under the hood gives the reader a better opportunity to choose the suitable algorithms with 
the suitable parameters, and the ambitious reader might start developing these algorithms 
further or apply them better in new domains. 

Motivation and Intuition 

In the previous two chapters, we have seen examples of data that is usually collected in a 2-
dimensional array as rows being samples or entities and features being columns. However, 
multiple datasets are usually interacting or correlated in latent variables; hence, multiple 
datasets need to be studied together in multi-way analysis. The following are 
generalisations of all ranks of tensors that data can appear in:  

● A single temperature value as a scalar can be a rank-zero tensor. 
● 1-way data for temperatures can be a vector as a rank-one tensor of a set of values 

for a given set of cities. Cities are the labels of the columns. 
● 2-way data describing temperatures for different map locations can be a matrix as a 

rank-two tensor, where the first coordinate is latitude, the second is the longitude 
coordinate, and the value of the tensor is the temperature. We do not have labels for 
rows and columns in data science, but in tensors, we can. This is achieved by Pivot 
tables that can be created of two columns in a Pandas data frame.  

● 3-way data for the same example can add a third dimension of time for the different 
temperature reading in the different locations at different times on the third mode. 

● 2-way data in which columns describe features against entities in rows such as 
student marks in different subject matrices as rank two tensors, such that the student 
identity is in mode 1, and subjects in mode 2, and values are the marks. The school 
grade can also be added as another mode and so forth.  

● Brain-Computer Interface (BCI) based on EEG signals are naturally multi-mode due to 
the data recording mechanism. For example, signals are recorded by multiple sensors 
(electrodes) in multiple trials and epochs for multiple subjects and with different 
tasks, conditions…, and so forth. This dataset can be represented in rank n tensors to 
enable multi-way multi-block data analysis techniques.  

● Magnetic resonance imaging (MRI), functional MRI, PET, and MEG datasets are also 
naturally multi-mode. For example, A NIfTI file for a typical MRI scan store the voxel 
values in an array of numbers. The coordinates for a single voxel within a NIfTI image 
volume can be specified as a 3-dimensional index (x, y, z) or a 4-dimensional index (x, 
y, z, t) for time. Then the subject is another mode, then the aim of the experiment is 
another, the resolution and so forth. Similar datasets can be found at 
https://openneuro.org/.  
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● Examples from psychometrics are provided by (Kiers and Mechelen, 2001) in their 
overview of three-way component analysis techniques. The overview is a good 
introduction to three-way methods, explaining when to use three-way techniques 
rather than two-way (based on an ANOVA test), how to preprocess the data, guidance 
on choosing the rank of the decomposition and an appropriate rotation and methods 
for presenting the results. 

Some datasets will be originally produced in tensor form but usually in multiple files, and a 
tensorisation step will always be required.  Python notebooks accompanying this book, such 
as “tensorisation.ipynb” and “multi-wayExamples.ipynb”, contain sample tensorisation 
tailored to particular datasets and analysis requirements. These implementations are very 
simple for illustration purposes. Many opportunities for generalisations, quantisation, 
sampling and aggregation, and optimisation can be achieved. Tensorisation applied in these 
examples is so far artistic. It might be a talent that can be enhanced by practice and 
exposure to different datasets, preprocessing requirements and analysis requirements. The 
thesis in (Debals, 2017) presents a more formal introduction to tensorisation as suitable for 
BSS and clustering problems. The discussion is rather theoretical, leaving many 
implementation details to the programmer's creativity. 

The opposite of tensorisation can be achieved, as chapter one explained. This happens when 
the data is naturally in tensor form, but the analyst needs to matricise or vectorise it for 2-
way analysis. An N-mode tensor can be unfolded or matricized into a matrix in N ways for 
each mode. The n-mode matricization of 𝒳 ∈  ℝ × ×···×  is denoted as 𝒳( )  ∈

 ℝ × ×···× × ×…×  and is taken by keeping the nth mode intact and concatenating the 
slices of the rest of the modes into an extended matrix (Kolda and Bader, 2009).  

Keeping these datasets in their original tensor-form structure and order as collected 
maintains the characteristics that will help estimate a manifold representative of the 
intrinsic structure that might get lost during the transformations such as vectorisation or 
matricisation. These transformations are meant to enable linear algebra analysis at the 
expense of losing the remarkable power of higher-order instruments that are not available 
in the lower order. This power is not a result of the generation of more data, as it is the 
result of the structure of the data in the higher order as it is naturally collected in different 
experiments and different domains and dimensionality (Smilde, Bro and Geladi, 2004). 
These heterogeneous and multi-aspect data are multimodal, measured using different 
sensors (experiments or data collection measures), and subject to different kinds of errors 
and uncertainties.  

Some representation analysis and pre-processing might be needed for any dataset to enable 
multi-way analysis based on the problem definition and data collection methods. Tensor 
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summation notation representation preserves the multilinearity of data as it comes in 
nature (Mangan, 2008).  

If the complete tensor object in a full format is created in memory, it will require huge 
memory, and analysing a high dimensional space will suffer from the curse of 
dimensionality. However, since the non-empty elements of a tensor object are often highly 
correlated with neighbouring elements in most applications of interest, these tensor objects 
are highly constrained and limited to a subspace, a manifold of intrinsically low dimension 
(Zhang, Li and Wang, 2005). Methods of feature extraction, dimensionality reduction, or 
decomposition/factorisation transform a high-dimensional data set into a low-dimensional 
equivalent representation while retaining most of the variance and interactions among the 
elements, capturing the underlying structure or the actual physical phenomenon modelled. 
Pair-wise interactions do not capture the multi-way interactions by the cancellation of 
effects and lack of interpretation clarity. In Python code in “multi-wayExamples.ipynb”, 
examples of pivot tables in matrix form were difficult to interpret when more features were 
added. In comparison, the tensorisation captures every pair-wise and higher multi-way 
interaction.  

In summary, an alternative definition of tensors is that they are like vectors that contain 
collections of components with magnitude and direction but in higher-dimensional space. 
Tensors can describe a function that houses the transformations of these components on a 
discrete high-dimensional grid capturing their interactions as the basis of these coordinates 
change (Charles Van Loan et al., 2009).  Not all multidimensional arrays are tensors. 
However, scalars, vectors, matrices or n-dimensional arrays are tensors and subject to multi-
way analysis, when their structures can transform to different coordinates (reference axes 
or scale) than those they are measured on, maintaining their properties, such as invariance, 
covariance, contravariance, and some form of distance measure or neighbourhood as 
explained in chapter two.  

3.1 N-D Arrays / Tensor definition 

Motivation: Any given dataset in a matrix form is said to be high dimensional as the number 
of columns increases. Because the degree of freedom increases with the number of 
columns, for example, the Matrix-High-DImensional-DF.ipynb shows the Kaggle 
Cardiovascular Disease dataset's degree of freedom increases as we add a new column in 
the analysis. The concept is emphasised by the pair-wise plots and how different they are 
for any pair of columns. This illustrates that matricising a high-dimensional dataset loses 
important structure. The importance of having various indices in tensor forms rather than 
the two indices in the matrix form lies in capturing this multi-way structure or variance 
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between each pair or more dimensions in the higher dimensional space. However, this easily 
creates the curse of dimensionality problem as N grows for an Nth-order tensor of size 
(𝐼  , 𝐼  , … , 𝐼 ),  as the number of elements exponentially grows. As will be discussed in 
chapters two and three, this will be handled by learning subspaces that approximate the 
high-dimensional space with reasonable accuracy deterioration. Chapter four discusses 
other approaches to dividing the large-scale tensors into several lower-rank tensors that 
only capture the relevant information. 

3.1.1 Tensor Definition 

Having seen why stacking more columns in the same matrix is not good, we can now 
increase the number of indices and use the original data arrangements in tensors.  

 

Tensors are defined to be higher-order matrices of N dimensions, so we need n indices to 
scan the elements of the tensor by its given shape vector or bounds. A tensor 𝒜 ∈
ℝ × × …×  is an element of the tensor product of N vector spaces, such that the 
corresponding multi-dimensional array is 𝒜(𝑖 , … , 𝑖 ), 𝑖  ∈ [1, 𝐼 ] and: 

• Index: 𝑖  represents the index along the kth dimension, known as mode; 
• Order: N is the order of A, i.e. the number of modes/dimensions/ways as 

iluustrated in Figure 1; 
• Size: 𝐼  represents the size along the kth mode, while the tensor shape is the vector 

[𝐼 , 𝐼 , … , 𝐼 ]. The size of a tensor is the range of values that can be obtained for a 
dimension of the tensor. For example, a tensor 𝒳 ∈ ℝ × × ×  is of order 4, size 
3 in mode-1, size 4 in mode-2, size 5 in mode-3 and size 6 in mode-4, and can have 
3 ×  4 ×  5 ×  6 = 360 values, and also denoted as having shape vector [3, 4, 5, 
6]. 

• Fibres: The mode-j vectors of 𝒜 are defined as the 𝐼  dimensional vectors obtained 
from 𝒜 by varying the index 𝐼 , while keeping all the other indices fixed as shown 
in Figure 2 a, b, c and d. 

• Slices: The mode-j slice of 𝒜 is defined as an (N−1)th-order tensor obtained by 
fixing the mode-j index of 𝒜 to be in 𝒜 (:, ..., :, 𝐼 , :, ..., :) as shown in Figure 2 e, f 
and g. 

• Blocks: block matrices are represented by tensors of order four, as shown in Figure 
3 (a)  

• Hierarchical/nested 
• Tensor Product: A tensor 𝒜 ∈ ℝ × × …×  is composed from the outer product 

of N vectors: 𝒜 = a(1) ◦ a(2) ◦ ... ◦ a(N), where a(k) is the k-dimensional vector 
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corresponding to the kth mode in the tensor. This is illustrated for a tensor of order 
three in Figure 3 (b) (Kolda and Bader, 2009; Lu, Plataniotis and Venetsanopoulos, 
2014). 

• Rank-1 tensor: is an n-way tensor object that can be strictly decomposed as the 
tensor product of n vectors. A tensor decomposition expresses a tensor in terms 
of a sequence of sums and products operating on simpler multi-way tensor 
objects. These methods will be explained in chapters three and four. 

 

 

Figure 1: Illustration of tensors of order N = 0, 1, 2, 3, 4. (Lu, Plataniotis and Venetsanopoulos, 2014) 

 

 

 

Figure 2: Illustration of the mode-n vectors/fibres and mode-n slices: (a) a tensor 𝒜 ∈ ℝ × × , (b) the mode-
1 vectors or fibers, (c) the mode-2 vectors or fibers, and (d) the mode-3 vectors or fibers, (e) the mode-1 slices 𝒜i::, 
(f) the mode-2 slices 𝒜:i:, and (g) the mode-3 slices: 𝒜::i. 

(a)  (b)  

Figure 3: (a) A block matrix represented as a 4th-order tensor (b) Rank-one third-order tensor, 𝒳 = a ◦ b ◦ c. 

a)           b)       c)  d)         e)               f        g) 
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3.1.2 Tensor Indexing 

In general, there are two possibilities for the representation of the tensors and the tensorial 
equations: 

 

1) The direct/ Einstein (symbolic, coordinate-free) notation (The Python NumPy function: 
np.einsum uses Einstein notation to express tensor contractions). This notation uses 
superscripts and subscripts to represent an operation concisely using known information 
about the tensors involved, such as their dimensionality and shape/size. This notation is 
suitable for Riemannian space, a smooth manifold or Minkowski space, which combines 
three-dimensional Euclidean space and time into a four-dimensional manifold where the 
space-time interval between any two events is independent of the inertial frame of 
reference in which they are recorded. This is visualised in https://youtu.be/CliW7kSxxWU.  

A summation index, when repeated twice or more across the tensors involved in the 
operation, such as aixi means i is the summation index of all possible values for vectors a and 
x. This can be written as aixi, indicating that a is a covariant vector (can be thought of as row 
vector with lower indices) and x is a contravariant vector/covector (can be thought of as a 
column vector with upper indices). This means they transform covariantly or 
contravariantly, with respect to change of basis. The variance will be explained in chapter 
two, and change of basis and more examples will be explained in chapter three. For now, a 
change of basis is a change of scale, unit of measurement, or coordinate system. The upper 
index for a column vector goes from up to down, and the lower index for a row vector goes 
from left to right. Ajixi means i is the summation index, and j is a second index to matrix A. 
This is more concise than writing ∑ A x  . The summation index, also called the dummy 
index, should have the same range of values for tensors involved in the operation. The non-
dummy indices are called free indices and take their ranges from the shape/size of the 
tensor and are used once in a term. The free index is fixed in the operation where a dummy 
variable is used, such that Ajixi for j = 3, and i takes all available values in its range, such as 
Ajixi = A31x1 + A32x2 +A33x3. 

Some examples are as follows (more explanation using tensor notation will follow): 

• Vector Space V with elements v: viei written in terms of basis vectors. The 
basis elements are written with lower indices, and components or vector 
coefficients are written with upper indices.  

• Inner product: 𝑎 ∙ 𝑥 =  𝑎 𝑥  
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• Kronecker delta: given the vector space V, its dual space (dual will be 
explained in chapter three), is V* has dual basis 𝑒∗, the Kronecker delta is 

defined as: < 𝑒∗, 𝑒 > =  𝑒 𝑒 =  𝛿 =
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

= 𝛿 , here the dual 

basis elements are written with upper indices. More on this will be 
explained in chapter three. 

• Cross product: 𝑎 × 𝑥 = ∑ 𝑎 𝑒  ×  ∑ 𝑥 𝑒 = 𝑎 𝑒 × 𝑥 𝑒 =

𝑎 𝑥 (𝑒 × 𝑒 ) =  𝑎 𝑥 𝜀 𝑒 , where 𝑒 × 𝑒 = 𝜀 𝑒  and 𝜀 = 𝛿 𝜀 , 
𝜀 is the permutation component as the Levi-Civita symbol, and 𝛿  is the 
Kronecker delta of the indices kl (1 when equal and zero otherwise). 

• Outer Product: 𝐴 =  𝑎 𝑥 = (𝑎𝑥) , i and j are different and are not 
eliminated by multiplication 

• Matrix-Vector Multiplication: 𝑢 = 𝐴 ∙ 𝑥 →  𝑢 = (𝐴𝑥) = ∑ 𝐴 𝑥 →

 𝑢 = 𝐴 𝑥  

• Matrix-Matrix Multiplication: 𝐶 = 𝐴 ∙ 𝐵 →  𝐶 = (𝐴𝐵) = ∑ 𝐴 𝐵 →

 𝐶 = 𝐴 𝐵  

2) The index (component) notation (NumPy arrays accommodate higher dimensional 
tensors, same as tensorly package and scikit-tt package). This notation is suitable for the 
Euclidean space and uses subscripts only. 

 

3.1.3 Tensor Transformations 

 

The mode-n matricization,𝑚𝑎𝑡(𝒳) , also defined as mode-n unfolding 𝒳[ ]of a tensor 𝒳 ∈

 ℝ × ×  …×   , is defined as follows: 

𝑚𝑎𝑡(𝒳)  = 𝒳[ ] =  𝒳  ∈  ℝ ×  …  …   

Where the matrix element is indexed with two indices (i, j), the first is from 1 to In, and the 
second j from 1 to: 

𝑖

,

 

The mode-n vectorisation of a tensor, 𝒳 ∈  ℝ × ×  …×   , is defined as follows: 

𝑣𝑒𝑐(𝒳)  =  𝒳  ∈  ℝ   …  …   
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Which is a mode-n matricization, followed by vertical stacking of the matrix in one column 

vector. For example, given 𝒳 ∈  ℝ × ×  =
1 3
2 4

5 7
6 8

 

mode-1 matricization of 𝒳 =
1 2 3 4
5 6 7 8

 

mode-1 vectorisation of 𝒳 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
5
2
6
3
7
4
8⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

An essential property of vectorisation of two tensors 𝒳, 𝒴, is that 𝑣𝑒𝑐(𝒳) 𝑣𝑒𝑐(𝒴)  =

 𝑡𝑟𝑎𝑐𝑒(𝒳 𝒴). 

The n-unfolding of a tensor, 𝒳 ∈  ℝ × ×  …×   creates a matrix that is defined as 
follows: 

𝒳 (𝑖 … 𝑖 , 𝑖 … 𝑖 ) = 𝒳(𝑖 𝑖 … 𝑖 ) 

where the first n indices enumerate the rows of 𝒳 , and the last N - n indices for its 
columns. Then 𝒳 ∈  ℝ ×  , such that 𝑚 = ∏ 𝐼 and 𝑙 = ∏ 𝐼 . 

The tensor n-rank of a tensor, 𝒳 ∈  ℝ × ×  …×   namely 𝑟𝑎𝑛𝑘 (𝒳) is the column rank 
of the n-unfolding 𝒳  such that it computes the number of dimensions in the vector span 
by n-mode of 𝒳.  

The tensor rank, namely rank(𝒳), is defined to be the minimum number of the sum of rank-
one tensor that can exactly factorise tensor 𝒳. 

3.1.4 Tensor Element-wise operations 

Element-wise tensor operations such as addition, subtraction, Hadamard product and 
division are implemented in NumPy and presented in the python notebook (xxxx) along with 
other examples used below. The transposition of a tensor is as follows: For a given tensor 
𝒳 ∈  ℝ , , … ,  , the transpose is defined as: 𝒳   ∈  ℝ , , … , . 
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3.1.5 Tensor Products 

The element-wise product followed by a summation is the scalar product (a generalisation 
of the inner or dot product) of two same-sized tensors 𝒳, 𝒴  𝜖 ℝ × ×…×  results in a 
scalar value, which is defined as follows: 

𝑧 = 〈𝒳, 𝒴〉 = 〈𝑣𝑒𝑐(𝒳), 𝑣𝑒𝑐(𝒴)〉 = … 𝒳(i , i , ... i ). 𝒴(i , i , ... i ) = 𝑥 𝑦 

 

Where y is the vectorised form of 𝒴, and x is vectorised 𝒳. Similarly, the Frobenius norm is 
extended in the higher dimension as: 

‖𝒳‖ = 〈𝒳, 𝒳〉 when the origin is zero, it is the length, but a distance between 𝒳 and 𝒴 

tensors: 𝑑𝑖𝑠𝑡(𝒳, 𝒴) =  ‖𝒳 − 𝒴‖ = 〈𝒳, 𝒴〉 

 

The outer product for 𝒳 𝜖 ℝ × × … ×  with 𝒴 𝜖 ℝ × × … ×  results in a tensor 
𝜖 ℝ × × … × × × × … ×  computed as: 

𝒞 = 𝒳 ∘ 𝒴 such that 𝑐 ,…,  , ,…, =  𝑥 ,…, 𝑦 ,…,  

 

The contracted product for 𝒳 𝜖 ℝ × …× ×  … ×  with 𝒴 𝜖 ℝ × …× × × … ×  with equal 
size along the first 𝑀 modes results in a tensor 𝜖 ℝ  … × × … ×  computed by: 

𝑐  …, , …, = 〈𝒳, 𝒴〉 ,…, , ,…, (  …, , …, ) =  … 𝑥 ,…, ,  …, 𝑦 ,…, , ,…,  

The results' entries are the summing of the product of the two input tensors along with the 
common indices. The inner/dot product is a special case of the contracted product when all 
modes are common, producing a scalar only as 𝑐 = 〈𝒳, 𝒴〉 ,…, , ,…, . Similarly, the outer 
product is a special case of the contracted product when no modes are common such that 
for 𝒳 𝜖 ℝ  … ×  with 𝒴 𝜖 ℝ × … × : 𝒞 = 𝒳 ∘ 𝒴 = 〈𝒳, 𝒴〉 , (  …, , …, ).  

 

The Tensor products are extensions to matrix multiplication that apply the dot product in a 
given order of the inputs (along axis 1/rows of the first matrix and axis 0/columns of the 
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second input that need to be conforming) to produce an output on the intersecting index in 
the output relative to the input indices used. The extension to higher dimensions requires 
specification of the conforming axis to apply the product on from the inputs, which will 
decide the position in the output where the result will be placed. The tensor Dot product 
can be used in different ways, and it is implemented as a function in the NumPy package. 
Below is the definition, followed by several examples. 

 

Tensor n-mode Products: for 𝒳 𝜖 ℝ × ×…×  with matrix U 𝜖 ℝ ×  , where n is a mode 
from the N modes of the first tensor, results in tensor 𝜖 ℝ × ×…×  × J × …×  , and is 
computed as follows: 

   ( 𝒳 × 𝑈)i , i , ... i , j, i ,...,  i  = ∑ 𝑥(i , i , ... i )𝑢  

The n-mode product of a tensor 𝒳 with a matrix U is related to a change of basis in the case 
when a tensor defines a multilinear operator. This is equivalent to pre multiplying each 
mode-n vector of 𝒳 by U. Thus, the mode-n product above can be written using the mode-n 
unfolding as 𝒞 (n) = U 𝒳 (n) where each entry of 𝒞 is defined as the sum of products of 
corresponding entries in 𝒳 and U. This is also called tensor contraction because the 
resulting tensor dimension is the sum of the dimensions of the original two tensors minus 
the dimension of the contraction. 

 

The Numpy package tensordot function sums the products of both input tensors’ elements 
(components) over the axes specified by the third argument “axis”, which designates the 
axes along which to perform the reduction (multiplication/addition). When axis = 0, each 
instance of both input tensors is a scalar input to the tensor product ⊗, producing a shape 
that concatenates input shapes. When axis = 1, or (1, 1), each instance from both inputs is a 
vector that is used in the tensor dot product. When axis = 2, which is the default, it will do 
double tensor contractions, producing a scalar. To sum over more than one axis, the third 
argument specifies one sequence to apply on both inputs or two sequences of the same 
length to apply on each of the inputs in order, indicating which axis to sum over as one and 
others as zero. For an N-D tensor, if we set axes argument = N, then we will multiply both 
tensors element-wise and then sum all values to get a single scalar result.  
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For the same vectors defined above: 𝑣 =
10
2

−6
, 𝑢 =  

−3
0

−2
, a mode-0 product is defined 

as 𝑣𝑢 =
10
2

−6
× [−3 0 −2] =

−30 0 −20
−6 0 −4
18 0 12

, which is the cross-product defined 

earlier.  

The Numpy package does not have an unfold function in one implementation, but the 
Tensorly package has. This can be produced in Python as a mode-0 tensordot operation. 
Mode-0 means the vectors along the zeroth axis in both inputs. Since the first vector is a 
column vector, then each element is a vector to apply the dot product with the zeroth axis 
vectors of the second vector. Since the second vector is a row vector, then the mode-0 
returns this row vector every time. This will be a scalar multiplication between each mode-0 
from the first vector (scalar) and the only row from mode-0 from the second vector.  

 

A mode-1 product is defined as 𝑣 𝑢 =[10 2 −6] ×
−3
0

−2
=  −18, which is the dot product 

defined earlier. This can be produced in Python as mode-1 tensordot operation, which 
applies the dot product on the first axis of v, which is a row vector now after transpose, and 
the first axis of u, which u, which is the column vector. In vectors, there are no more modes 
to attempt except 0 and 1. 

For matrices example using tensordot, the matrix multiplication example of gas distribution 
presented earlier, we set the axis argument =1, or (1, 0), specifying clearly that vectors along 
axis=1 (which is each instance of (2,3) in this example) from first input is used as input to the 
dot product with vectors along last one axis from second input: so that will give us four 
vectors of length 3, and perform the dot product as follows: 

P ∈ ℝ × × S ∈ ℝ × =
0.5 0.2 0.3
0.0 0.4 0.6

×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

 

=  

⎣
⎢
⎢
⎢
⎢
⎡[0.5 0.2 0.3 ] ×

0.4
0.0
0.0

[0.5 0.2 0.3 ] ×
0.6
0.7
0.5

[0.5 0.2 0.3 ] ×
0.0
0.3
0.0

[0.5 0.2 0.3 ] ×
0.0
0.0
0.5

[0.0 0.4 0.6 ] ×
0.4
0.0
0.0

[0.0 0.4 0.6 ] ×
0.6
0.7
0.5

[0.0 0.4 0.6 ] ×
0.0
0.3
0.0

[0.0 0.4 0.6 ] ×
0.0
0.0
0.5 ⎦

⎥
⎥
⎥
⎥
⎤

 

=  
0.20 0.59 0.06 0.15
0.00 0.58 0.12 0.30

∈ ℝ ×  
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To apply tensordot across axis 2 on both inputs, we take the last two axes of P, with the first 
two axes of S,  it will return each scalar and multiply with each scalar in the second input, 
but require that the number of elements in both input tensors matches. Therefore it will not 
work in the above example, but will work on similar shape inputs as below, and sum all 
products: 

P × S =
0.5 0.2 0.3
0.0 0.4 0.6

×
0.4 0.6 0.0
0.0 0.7 0.3

= 0.78 

To apply tensordot across the axis 0 on both inputs, it will perform the dot product for every 
instance of P with every instance of S, which will result in an expansion in the form of the 
cross product on the higher dimension and produce an output shape that concatenates the 
shape of both inputs. 

P × S =
0.5 0.2 0.3
0.0 0.4 0.6

∈ ℝ × ×
0.4 0.6 0.0
0.0 0.7 0.3

∈ ℝ ×  

=
0.5 ×

0.4 0.6 0.0
0.0 0.7 0.3

0.2 ×
0.4 0.6 0.0
0.0 0.7 0.3

0.3 ×
0.4 0.6 0.0
0.0 0.7 0.3

0.0 ×
0.4 0.6 0.0
0.0 0.7 0.3

0.4 ×
0.4 0.6 0.0
0.0 0.7 0.3

0.6 ×
0.4 0.6 0.0
0.0 0.7 0.3

 

=

0.2 0.3 0.0
0.0 0.35 0.15

0.08 0.12 0.00
0.00 0.14 0.06

0.12 0.18 0.00
0.00 0.21 0.09

0.0 0.0 0.0
0.0 0.0 0.0

0.16 0.24 0.00
0.00 0.28 0.12

0.24 0.36 0.00
0.00 0.42 0.18

∈ ℝ × × ×  

 

To reproduce the example in Figure 4 using NumPy tensordot, while having different shapes 
for the two input tensors 𝒜 ∈ ℝ8x6x4  and U ∈ ℝ3×8 , the axes argument can be a sequence 
of (0, 1). This will produce dot products between mode-1 vectors of 𝒜 (∈ ℝ8 ) by U ∈ ℝ3×8  
(which is a projection to a higher dimension) to obtain a vector b ∈ ℝ3 , as the differently 
shaded vector indicates in the right of the figure, producing an output ∈ ℝ3×6×4. The 
tensordot NumPy implementation produced the output shape ∈ ℝ6×4×3, because of 
reversing the indices.  

 

The tensorly python package has a tensor algebra mode dot function as “tenalg.mode_dot”, 
which only contracts a specified axis in the mode argument and concatenates all other 
shape vectors in inputs to create the output shape. So, only mode =0 can work in Error! 
Reference source not found. example, as axis=0 in the first input has the same shape “8” as 
axis=1 in the second input, and the output is of shape ∈ ℝ3×6×4 as intended in (Kolda and 
Bader, 2009; Lu, Plataniotis and Venetsanopoulos, 2014). 
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Figure 4: Visual illustration of the mode-n (mode-1) multiplication 

The Kronecker product for 𝐴 𝜖 ℝI× with matrix U 𝜖 ℝ × results in a block tensor 
𝜖 ℝ  computed by a scalar multiplication of every element in the first tensor with the 
full tensor as a block of the second tensor: 

𝐴⨂𝑈 =

𝑎 , 𝑈 ⋯ 𝑎 , 𝑈

⋮ ⋱ ⋮
𝑎 , 𝑈 ⋯ 𝑎 , 𝑈

  

It can be computed as columnwise Kronecker product as follows: 

𝐴⨂𝑈 =  𝑎 ⨂𝑢 , 𝑎 ⨂𝑢 ,  𝑎 ⨂𝑢  …  𝑎 ⨂𝑢 ,  𝑎 ⨂𝑢 , … 𝑎 ⨂𝑢 , 𝑎 ⨂𝑢  

= [𝑣𝑒𝑐(𝑢 𝑎 ), 𝑣𝑒𝑐(𝑢 𝑎 )], 𝑣𝑒𝑐(𝑢 𝑎 ), …  𝑣𝑒𝑐(𝑢 𝑎 ), 𝑣𝑒𝑐(𝑢 𝑎 ), … , 𝑣𝑒𝑐 𝑢 𝑎 , 𝑣𝑒𝑐 𝑢 𝑎  

 

The mixed-product property of Kronecker product states that if X, Y, A and B are 
conformable matrices whose dimensions are suitable for multiplications such that the 
matrix product XY and AB can be formed, then we have (X⨂𝐴 )(Y⨂𝐵) = XY ⨂ AB 

 

Kronecker  product is defined for higher order tensors such as 𝒜 𝜖 ℝ ×…×  and 𝒰 
𝜖 ℝ ×…×  to yield a tensor 𝜖 ℝ ×…× . 

This is implemented in the Numpy package as “kron” function, producing a composite array 
made of blocks of the second tensor scaled by the first tensor. For the same previously 
defined v and u vectors: 
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v⨂u =
10
2

−6
⨂

−3
0

−2
 = [10 × [−3 0 −2] 2 × [−3 0 −2] −6 × [−3 0 −2]] 

= [−30 0 −20 −6 0 −4 18 0 12] 

 

For the gas distribution matrices example: 

P ∈ ℝ × ⨂ S ∈ ℝ × =
0.5 0.2 0.3
0.0 0.4 0.6

⨂
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

= 

=

⎣
⎢
⎢
⎢
⎢
⎡0.5 ×

0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

0.2 ×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

0.3 ×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

0.0 ×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

0.4 ×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5

0.6 ×
0.4 0.6 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.5 0.0 0.5 ⎦

⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡
0.20 0.30 0.00 0.00 0.08 0.12 0.00 0.00 0.12 0.18 0.00 0.00
0.00 0.35 0.15 0.00 0.00 0.14 0.06 0.00 0.00 0.21 0.09 0.00
0.00 0.25 0.00 0.25 0.00 0.10 0.00 0.10 0.00 0.15 0.00 0.15
0.00 0.00 0.00 0.00 0.16 0.24 0.00 0.00 0.24 0.36 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.28 0.12 0.00 0.00 0.42 0.18 0.00
0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.00 0.30 0.00 0.3 0⎦

⎥
⎥
⎥
⎥
⎤

∈ ℝ ×  

 

The Khatri-Rao product for 𝐴 𝜖 ℝI× with matrix U 𝜖 ℝ × requires having equal number of 
columns in input tensors such that a columnwise Kronecker product of the input tensors 
results in a tensor that 𝜖 ℝ ×  

   𝐴 ⊙ 𝑈 =  [𝑎 ⨂𝑢       𝑎 ⨂𝑢   …     𝑎 ⨂𝑢 ] 

Tensorly package has a Khatri-Rao product function, but Numpy does not have one, but a 
fully vectorised version can be implemented as follows: 

def khatri_rao(a, u): 
    c = a[...,:,np.newaxis,:] * u[...,np.newaxis,:,:] 
    # collapse the first two axes 
    return c.reshape((-1,) + c.shape[2:]) 
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Khatri-Rao product is defined for each mode in the higher-order tensors such as given  
𝒜 𝜖 ℝ ×…×  and 𝒰 𝜖 ℝ ×…×  where for which 𝐼  = 𝐽 , then 𝒜 ⊙ 𝒰 =

𝒞 𝜖 ℝ ×…× ×  × ×… ×  with entries 𝒞(: , … , ∶, 𝑖 , ∶, … , ∶) =

𝒜(: , … , ∶, 𝑖 , ∶, … , ∶)⨂𝒰(: , … , ∶, 𝑖 , ∶, … , ∶). 

The scientific Python package “SciPy” implements the Khatri-Rao product 
“scipy.linalg.khatri_rao” implements it as the Kronecker product of every column of the first 
tensor by the second tensor. It does not work for vectors. For the gas distribution matrix 
example, the number of columns of the arrays should match, so a transpose on the second 
matrix results in the following: 

𝐴 ∈ ℝ × ⊙ 𝑈 ∈ ℝ × =
0.5 0.2 0.3
0.0 0.4 0.6

⨂

0.4 0.0 0.0
0.6 0.7 0.5
0.0 0.3 0.0
0.0 0.0 0.5

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
[0.5 0.2 0.3]⨂

0.4 0.0 0.0

0.6 0.7 0.5

0.0 0.3 0.0

0.0 0.0 0.5

[0.0 0.4 0.6]⨂

0.4 0.0 0.0

0.6 0.7 0.5

0.0 0.3 0.0

0.0 0.0 0.5 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.20 0.00 0.00
0.30 0.14 0.15
0.00 0.06 0.00
0.00 0.00 0.15
0.00 0.00 0.00
0.00 0.28 0.30
0.00 0.12 0.00
0.00 0.00 0.30⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Direct sum of tensors is defined for the Nth-order tensors 𝒜 𝜖 ℝ ×…×  and 𝒰 
𝜖 ℝ ×…×  yields a tensor 𝒞 𝜖 ℝ( ) ×…×( ), 

with entries 𝒞(𝑘 , … , 𝑘 ) = 𝒜(𝑘 , … , 𝑘 ) if 1 ≤ 𝑘  ≤  𝐼 , ∀𝑛, 

𝒞(𝑘 , … , 𝑘 ) = 𝒰(𝑘 − 𝐼 , … , 𝑘 − 𝐼 ) if 𝐼  <   𝑘  ≤  𝐼  + 𝐽 , ∀𝑛, 

and 𝒞(𝑘 , … , 𝑘 ) = 0, otherwise (see Figure 5(a)).  

 



CHAPTER 3 

17 

Partial mode-n sums for tensors is defined for the Nth-order tensors 𝒜 𝜖 ℝ ×…×  and 𝒰 
𝜖 ℝ ×…×  for which 𝐼  = 𝐽 , then 𝒜 ⊕ 𝒰 =

𝒞 𝜖 ℝ( )×…×( )×  ×( )×… ×( ) with entries 𝒞(: , … , ∶, 𝑖 , ∶, … , ∶) =

𝒜(: , … , ∶, 𝑖 , ∶, … , ∶) ⊕ 𝒰(: , … , ∶, 𝑖 , ∶, … , ∶) (see Figure 5(c)). 

 

 

Figure 5: Illustration of the direct sum, partial direct sum and concatenation operators of two 3rd-order 
tensors. (a) Direct sum (b) Concatenations along mode-1,2,3. (c) Partial (mode-1, mode-2, and mode-3) direct sum. 

 

Concatenation of Nth-order tensors along mode-n of tensors 𝒜 𝜖 ℝ ×…×  and 𝒰 
𝜖 ℝ ×…× , for which 𝐼  = 𝐽 , ∀𝑚 ≠  𝑛 yields a tensor 𝒞 𝜖 ℝ  ×…× ×( )× ×…× =

𝒜 ⊞ 𝒰 with subtensors 𝒞(𝑖 , … , 𝑖 , ∶, 𝑖 , … , 𝑖 ) = 𝒜(𝑖 , … , 𝑖 , ∶, 𝑖 , … , 𝑖 ) ⊕

𝒰(𝑖 , … , 𝑖 , ∶, 𝑖 , … , 𝑖 )  

as illustrated in Figure 5(b). 

 

3D convolution for two 3rd-order tensors 𝒜 𝜖 ℝ × ×  and 𝒰 𝜖 ℝ × × , yields a tensor 
𝒞 𝜖 ℝ( ) ×( )×( ) = 𝒜 ∗ 𝒰,  with entries: 𝒞(𝑘 , 𝑘 , 𝑘 ) =

∑ ∑ ∑ 𝒰(𝑗 , 𝑗 , 𝑗 ) 𝒜(𝑘 − 𝑗 , 𝑘 − 𝑗 , 𝑘 − 𝑗 ) as illustrated in Figure 6 for 2D 
convolution. 

 

Partial (mode-n) convolution for two tensors 𝒜 𝜖 ℝ ×…×  and 𝒰 𝜖 ℝ ×…× , yields a 
tensor 𝒞 𝜖 ℝ ×…× ×  ( ) × ×… × = 𝒜 ⊡ 𝒰 , the subtensors of 
which are 𝒞(𝑘 , … , 𝑘 , ∶, 𝑘 , … , 𝑘 ) = 𝒜(𝑖 , … , 𝑖 , ∶, 𝑖 , … , 𝑖 ) ∗

𝒰(𝑗 , … , 𝑗 , ∶, 𝑗 , … , 𝑗 ), where 𝑘 = 𝑖 𝑗 , …., and  𝑘 = 𝑖 𝑗 . 
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Figure 6: Illustration of the 2D convolution operator, performed through a sliding window operation along 
both the horizontal and vertical index (Cichocki et al., 2016, p. 1). 

3.1.6 Orthonormal Tensor 

Given 𝒜 ∈ ℝ , such that N=(N1, N2, …. Nd)T, we split 𝒜 into two subtensors, the first is 𝒜1 
∈ ℝ , such that N’=(Nk1, Nk2, …. Nke)T, and the second is 𝒜2 ∈ ℝ , such that N’’=(Nl1, Nl2, 
…. Nlf)T, such that e+f =d. 𝒜 is orthonormal with respect to the 𝒜1 if the N’ -matricization of 
𝒜 (𝒜 = 𝑚𝑎𝑡(𝒜) ) satisfies 

𝒜 ∙ (𝒜 ) = 𝒜 ∙ (𝒜 ) = 𝐼 ∈ ℝ × . It is necessary that: 

𝑁 ≤ 𝑁  

 

 

This is illustrated in Figure 7 using a graphical notation similar to the Tensor Networks 
notation that will be explained in chapter four. 𝒜 is orthonormal with respect to 𝒜2 if the 
N’’ -matricization of 𝒜 (𝒜 = 𝑚𝑎𝑡(𝒜) ) satisfies 𝒜 ∙ (𝒜 ) = 𝒜 ∙ (𝒜 ) =

𝐼 ∈ ℝ ×  . 

Knowing that a tensor is orthonormal makes its decomposition easier, as explained in 
chapter two.  

  

Figure 7: Orthonormal tensors: (a) Graphical representation of a tensor 𝒜 ∈ ℝ , which 
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is orthonormal with respect to the set N’=(Nk1, Nk2, …. Nke)T ⊂ N. (b) Tensor multiplication 

of 𝒜 and 𝒜 T. The result is the identity tensor 𝐼 ∈ ℝ ×  (Gelß, 2017). 

3.3 Motivational Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In python notebook, tensorisation.ipynb, the Kaggle Heart disease factors dataset is 
tensorised using both the direct columns from the dataset and the PCA as a 2-way 
dimensionality reduction approach from which the first three principal components created 
a three-way tensor. Several tensorisation examples are demonstrated, with many more 
used in the literature mentioned. Then, various regression and compression approaches are 
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demonstrated. For a small dataset, it was easy to create the full-format tensor space. Other 
examples attempted to allocate space that was not available in the testing machine. Two 
approaches can solve this dimensionality curse: 1) Sparse tensor structures are required, 
and 2) creating the decomposed tensor components and working on them directly without 
creating the complete tensor. These methods are embedded in the tensorisation step by 
various approaches. 

 

3.3.1 Regression/Classification 

Regression is a supervised learning algorithm that estimates the decision line equation 
parameters (weights) 𝑤 from a prelabelled dataset X with y label. Either analytically or using 
the gradient descent algorithm, the aim is to minimise the error 𝜀 by adjusting the weights 
using matrix form. 𝑋𝑤 +  𝜀 =  𝑦, where y is the target/response/dependent variable in the 
dataset such that y ∈ ℝ , and N is the number of samples (data points or rows), X is the 
remaining columns in the dataset that represent the features/predictors/independent 
variables such that X ∈ ℝ ×  and w is the coefficients or weights of each feature such 
that w ∈ ℝ , and d is the number of features (columns) or the dimensionality. We add 
one extra dimensionality for the bias weight(0) to be multiplied by x[0] = 1. Since N is usually 
much more than d, we have more equations than variables and can not use Gaussian 
Elimination to solve this system of equations. The Normal Equation can be used to find the 
least error squares solutions (best fit) to systems with more equations than unknowns: 
𝑋 𝑋𝑤 =  𝑋 𝑦, solving for 𝑤 =  (𝑋 𝑋)  𝑋 𝑦. 

 

The normal equation solution is computationally expensive for larger matrices. Other 
solutions include minimising the error by partial derivatives with respect to each weight 
being set to zero or maximising the likelihood function by using the gradient descent 
algorithm and its variants. The performance evaluation of the regression is estimated by 

mean squared error: 𝜎 =
∑ ( )

=
∑ ( ( )). 

The same algorithm can be used for classification when Y is a categorical value (the class 
labels). Then the performance evaluation becomes the accuracy rate or the confusion 
matrix. Most machine learning algorithms and neural networks start from the regression 
and further specify the equation to add more objectives or constraints. The 
tensorisation.ipynb Python notebook shows more details. 
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3.3.2 Clustering 

Clustering is an unsupervised machine learning approach such that given an unlabelled data 
matrix X, it can be represented as X≈ABT, such that each row in A (the canonical basis vector) 
selects a row in B, which contains the clustering vectors. Estimating H and C from X enables 
multi-way clustering.  

3.3.3 Data Distributions and Mixtures: 

Data distribution guides the statistical analysis and the generative methods in machine 
learning. A Gaussian distributed feature has its expected value calculated using an equation 
completely different from poisson, bernoulli, binomial or any known distribution. 
Predefining the distribution of the dataset is used in estimating the parameters in 
parametric machine learning methods. When the distribution is not known, non-parametric 
or kernel methods are used. Bayesian methods are probabilistic methods that rely on 
understanding the data distribution. These methods are generative such as they know how 
samples are generated in each class, rather than the discriminative machine learning 
methods that can only identify the sample’s class without creating a complete generative 
model. The assumption of Gaussian distributions because of the central limit theorem has 
failed in many situations. Some analysts justify the 2008 financial crises to be caused by this 
assumption in banking and financial modelling and prediction software (Watts, 2016).  

 

Data often come from various distributions and mixtures of Gaussians. Studying the data 
distribution properly leads to appropriate analysis. Often there are latent variables that are 
not directly observed in the dataset that methods like factor analysis reveal. Chapter two 
will explain these methods and more as we proceed. There is a lot to learn about the various 
data distribution shapes, expected variable, standard deviation calculations, and their 
effects on building a model. Books such as (Sun and Kim, 2020), (Downey, 2013) cover topics 
required to understand parametric Bayes, and a deep dive into the non-parametric Bayes 
will make it even clearer, such as in (Ghosal and Vaart, 2017). 

3.3.4 Graph Structures: 

Graphs and networks: Graphs are made up of vertices and edges, where edges are defined 
as ordered pairs of vertices, like (i,j). A graph with n vertices and m edges can be 
represented as an n × n matrix M, where M[i,j] denotes the number (or weight) of edges 
from vertex i to vertex j. There are surprising connections between combinatorial properties 
and linear algebra, such as the relationship between paths in graphs and matrix 



CHAPTER 3 

22 

multiplication and how vertex clusters relate to the eigenvalues/vectors of appropriate 
matrices. 

 

Tensors elements can be sparse, and the coordinate connecting them is not steadily growing 
to contain data points in every unit increment across all coordinates. A Manifold of points in 
a dataset can be connected (mapped) to a lower dimension embedding forming a network 
or a graph structure that does not need to follow a Euclidean coordinate system. 

The graph structure of the gas distribution example earlier is illustrated in Error! Reference 
source not found.. Various schematic higher dimension graph representations are shown in 
Figure 9, such as a graph is just the data structure representing the entity, such as a real 
value or class in a. A one-dimensional tensor (vector) is represented with one arrow 
connecting two points and can be extended to more points on the same single dimension. A 
two-dimension tensor (matrix) is represented with a graph with two arrows at every node, 
representing every change of coordinate value. Similarly, in the d to f illustrations in Figure 
9, you will find that each node has arrows in each dimension to connect to the previous or 
following index value on that coordinate. 

 

Figure 8: Gas Distribution Example Graph structure 
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Figure 9: Tensors Graph Structures: a) scalar, b) 2D, c) 3D, d) 4D, e) 5D, and f) 6D 

Python has several stable packages implementing graph/network data structures with 
various analysis tools and efficient parallel implementation. Python-igraph is the set of 
Python bindings for igraph, a collection of network analysis tools emphasising efficiency, 
portability and ease of use. NetworkX is another package for the creation, manipulation, and 
study of the structure, dynamics, and functions of complex networks. It is implemented 
based on NumPy and SciPy and therefore supports all common platforms. graph-tool is yet 
another efficient package for manipulation and statistical analysis of graphs, based on the 
C++ Boost Graph Library and parallelised using OpenMP. 

 

3.4 Multilinear Algebra 

The tensor operations presented in chapter one are the foundation for Multilinear algebra 
expressed in Euclidean geometry. This section will discuss non-linear functions, followed by 
a summary of differential geometry on manifold visualizations. These will help visualise the 
algorithmic concepts discussed in this book and the literature. 

a)               b)    c)       d) 

e)       f) 
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3.4.1 Non-Linearly Separable Datasets 

Data is a matrix of entities in m rows and n features in columns. A point p in the dataset is a 
row vector of all features describing one entity in the n-dimensional space. The number of 
the features N is the dimensionality of the dataset ℝ , in which the data vectors from the 
vector space of the problem with basis ei 0 ≤ i < N, defined as: 

𝑒 =  

⎣
⎢
⎢
⎢
⎡
1
0
⋮
0
0⎦

⎥
⎥
⎥
⎤

 , 𝑒 =  

⎣
⎢
⎢
⎢
⎡
0
1
⋮
0
0⎦

⎥
⎥
⎥
⎤

, … , 𝑒 =  

⎣
⎢
⎢
⎢
⎡
0
0
⋮
1
0⎦

⎥
⎥
⎥
⎤

𝑒 =  

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦

⎥
⎥
⎥
⎤

 

Any dataset can be described as the Manifold M in ℝ  that contains all points (rows) in the 
dataset. Chapter one explains that machine learning aims to approximate a function 
describing a given dataset. The equation can be linear, such that the linear 
regression/classification method explained in chapter one will provide a good 
approximation. When data is not linearly separable, a curve equation can be the one that 
describes its dynamics. Curves can be defined in the non-Euclidian space, such as hyperbolic 
geometry and elliptic geometry that this section will focus on, and it can also be defined in 
the Riemannian geometry that the next section and chapter five will dive more into it.  

Curves equations are described as one of the four types of conic sections, which are the 
intersections of the surface of the cone with a plane at different angles. Figure 10 shows the 
sections as cuts through a cone described in Wikipedia. Each type is described by a focus 
point, directrix line, and eccentricity ratio. Eccentricity is the constant multiple that 
describes the distance between all the points on the curve of the conic section. The focus 
point is multiples of the eccentricity constant of the distance to the directrix line. Although it 
is not considered a conic section anymore, the first type is the circle. Circles are generated 
when the cutting plane is parallel to the plane of the generating circle of the cone. It is a 
particular type with a focus point, to which all the points on the circumference are of equal 
distance and no directrix line; hence, eccentricity is equal to zero. The second type is the 
ellipse, with eccentricity equal to ½, forming a closed curve inside the cone. The third type is 
the parabola with eccentricity equal to one. The fourth type is the hyperbola, with 
eccentricity equals two. 
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Figure 10: Curves as conic sections. 

A quadratic equation of degree two can describe a non-linear decision plane, forming an arc 
or curve. A polynomial equation of degree two can be represented algebraically using a 
matrix as well. For example, given a dataset as follows: 

x y 
-1 3 
0 1 
1 1 
2 4 
3 6 

A system of equations can be defined as follows: 

w0 - 1w1 + 1w2 = 3 
w0 + 0w1 + 0w2 = 1 
w0 + 1w1 + 1w2 = -1 
w0 + 2w1 + 4w2 = 1 
w0 + 3w1 + 6w2 = 3 

This dataset X fits a parabola. The equation of the parabola is: y = w0 + w1x + w2x2. We can 
use the normal equation again. The following matrix X contains an extra first column vector 
as constant 1, a second column vector as the given x variable/feature, and a third column 
vector as x2. Given y, we can infer w (three parameters weights or coefficients to infer):  

X =  

⎣
⎢
⎢
⎢
⎡
1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9⎦

⎥
⎥
⎥
⎤

, w = 
𝑤
𝑤
𝑤

, 𝑦 =  

⎣
⎢
⎢
⎢
⎡

3
1

−1
1
3 ⎦

⎥
⎥
⎥
⎤
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X 𝑋𝑐 =  
1 1 1 1 1

−1 0 1 2 3
1 0 1 4 9

  

⎣
⎢
⎢
⎢
⎡
1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9⎦

⎥
⎥
⎥
⎤

 
𝑤
𝑤
𝑤

=  
1 1 1 1 1

−1 0 1 2 3
1 0 1 4 9

⎣
⎢
⎢
⎢
⎡

3
1

−1
1
3 ⎦

⎥
⎥
⎥
⎤

  = X 𝑦 

=
5 5 15
5 15 35

15 35 99

𝑤
𝑤
𝑤

=  
7
7

33
 

Now, we can solve by Gaussian Elimination as follows: 

1. Form the Augmented Matrix:  
5 5 15
5 15 35

15 35 99

7
7

33
 

2. r1 ÷ 5     
1 1 3
5 15 35

15 35 99

1

7
33

 

3. -5 * r1 +r2  and -15 * r1 +r3.  
1 1 3
0 10 20
0 20 54

1

0
12

 

4. r2 ÷ 10     
1 1 3
0 1 2
0 20 54

1

0
12

 

5. -20 * r2 +r3.    
1 1 3
0 1 2
0 0 14

1

0
12

 

6. r3 ÷ 14     
1 1 3
0 1 2
0 0 1

1

0  

We can continue by back-substitution with w2 =  

w1 + 2( ) = 0  w1  = −1  

w0 +(−1 )+ 3( ) = 1   w0  =  

y = 0.9286x2 - 1.7571x + 
0.1714

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

-5 0 5

XY-Values
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𝑤
𝑤
𝑤

=

⎣
⎢
⎢
⎢
⎢
⎡

19

35

−1
5

7
6

7 ⎦
⎥
⎥
⎥
⎥
⎤

=
0.54

−1.71
0.86

 

These are not precisely the coefficients calculated by the chart to identify the trend line on 

the parabola. However, they produce the least squared error as  as shown below: 

X-Values Y-ValuesPredicted YError Error2

-1 3 3  
−4

35
 

16

1225
 

0 1 
19

35
 

16

35
 

256

1225
 

1 -1 
−11

35
 

−24

35
 

576

1225
 

2 1 
19

35
 

16

35
 

256

1225
 

3 3 3  
−4

35
 

16

1225
 

 

The excel plot might use a more computationally efficient least squared error minimisation 
than the normal equation, in which computational complexity is O(n2.4) to O(n3). The most 
efficient alternative is the gradient descent algorithm, with computational complexity 
O(kn2), and k is the number of iterations (Carter, 1995). 

We can expand the normal degree to a higher degree polynomial m for n data points as 
follows: 

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡
1 𝑥 𝑥 … 𝑥

1 𝑥 𝑥 … 𝑥
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥 𝑥 … 𝑥

1 𝑥 𝑥 … 𝑥 ⎦
⎥
⎥
⎥
⎥
⎤

, w = 

⎣
⎢
⎢
⎢
⎡

𝑤
𝑤
⋮

𝑤  
𝑤 ⎦

⎥
⎥
⎥
⎤

 , y = 

⎣
⎢
⎢
⎢
⎡

𝑦
𝑦
⋮

𝑦  
𝑦 ⎦

⎥
⎥
⎥
⎤

  

Some datasets are difficult to estimate their curve functions. To know which conic section is 
represented by a dataset with the equation 6x2 + 15y2 + 19xy = 1, a substitution T: u = 2x + 
3y; v = 3x + 5y,  clears the mixed term 19xy from the quadratic form 6x2 + 15y2 + 19xy and 
we get, uv = 1. This is achieved by diagonalisation. Then using the substitution S: w = u + v; z 
= u – v, we have the equation w2 + z2 = 4, which is hyperbola equation. These compose 
linear mapping from 𝑆 ∘ 𝑇: ℝ → ℝ , which is a multiplication of the matrices A and B 
capturing the linear transformation T and S, respectively. These are: 
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𝐴 =  
2 3
3 5

 , 𝐵 =  
1 1
1 −1

 , then 𝑆 ∘ 𝑇 = 𝐵𝐴 =  
1 1
1 −1

 
2 3
3 5

 =

 
1 × 2 + 1 × 3 1 × 3 + 1 × 5
1 × 2 − 1 × 3 1 × 3 − 1 × 5

 =
5 8

−1 −2
 . 

More details about linear maps, diagonalisation, and various applications can be found in 
(Chahal, 2018). Chapter five focuses on mapping functions and achieving better 
representation on a new coordinate basis. 

Global polynomial optimization is achieved in Tensor form using tensor decomposition 
approaches (Marmin, Castella and Pesquet, 2020). This is useful for various function 
approximation applications for multilinear functions, non-linear functions with polynomials, 
matrix-matrix multiplication, and systems of polynomial equations.   

Python notebook Classification_Linear_NonLinear.ipynb shows examples of non-linearly 
separable datasets solved by different SVM kernel functions and other linear and non-linear 
algorithms, as discussed in chapter two. 

When the non-linear solution is complex, zooming into any arc enough will approximate it 
as a line and can be solved linearly or in lower dimensions. 

3.4.2 Differential Geometry on Manifolds 

This section explains some mathematical preliminaries referenced in the following sections 
and chapters. The Riemannian space or Riemannian Manifolds describe curvatures in higher 
dimensions and provide geometric properties to facilitate the partial differential equations 
used in many Machine Learning (ML) algorithms. Some visualisations of these concepts are 
presented in https://youtube.com/playlist?list=PLbRB7u42hOE8rMIvShBxxiSdBdh9yQQL_. 
Since ML and Data science perspectives are the main focus of this book, we will cover the 
essentials of how calculus on Manifolds is applied in deriving some of the basic algorithms 
and explains their behaviour. Calculus on Manifolds is better explained by the derivation 
steps and visualisations, such as the style adopted in (Fortney, 2018). This book's main aim is 
to show how these concepts affect the behaviour of the functions in the higher space. Here, 
we will summarise the main findings relevant to ML rather than how they are derived.  

Any equation dynamics are best captured in the form of the rate of change that is calculated 
using calculus methods. Plotting any dataset against the x-y coordinate partially visualises its 
dynamics. As the data increases in dimensionality, simple plotting will not be feasible. 
Alternatively, we learn a manifold, which is defined abstractly as a Euclidean space 
embedded locally in the higher dimensional space ℝ  for some value for n.  Manifolds 
spaces are collections of data points, while vector spaces are collections of vectors with 
linear transformation functions defined on them. Physically, not all transformations are 
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feasible for a dataset, so learning a manifold representing the given points only, reduces the 
dimensionality. Then, we can algebraically work with gradients of the data to understand its 
dynamics. Gradients are partial first derivatives that are slopes of lines tangent to the graph 
of the function at a certain point.  

Manifolds’ data points are assumed to have local Euclidean space on which an equation of 
neighbourhood can retrieve equally spaced points using Euclidean distance measures and 
on which parallelism and perpendicular relationships can be identified.  Figure 11 (a) shows 
an example of Euclidean space on ℝ  on which a parallel transport from vp = (2, 1) at point p 
to point q is done, and parallel vectors are created. Another example is that the distance 
from point a to point b is measurable using the Euclidean distance metric. Figure 11 (b) 
shows an ℝ  Manifolds represent the earth map on which point p is at the north pole and 
point q is on the equator. Neither distance nor parallelism can be calculated using Euclidean 
metrics. Root Mean Square Error (RMSE) is based on the Euclidean metric; hence all our 
optimisation algorithms, once fed with a new data structure for tensors, will also need to 
choose a suitable metric.  A Minkowski metric is defined on 4-D spacetime as 𝜂(𝑣 , 𝑣 )  ≡

 𝑥 𝑥  + 𝑦 𝑦  + 𝑧 𝑧  − 𝑡 𝑡 . Otherwise, a Riemannian metric can be used instead, such 
as the Fisher metric based on the Fisher information matrix that uses KL divergence as a 
distance measure. The KL divergence is a measure of dissimilarity between two 
distributions, and the Fisher information Matrix is the Hessian Matrix of the KL divergence 
at the point where two distributions are equal.  These will be further explained in the last 
subsection of this section while discussing Tensors on Manifolds. Some preliminary 
definitions that are needed while working with Manifolds are as follows: 

 Coordinate maps φi : Ui → ℝ  are defined on an n-dimensional manifold space M 
that can be entirely covered by a collection of local coordinate neighbourhoods Ui 
with one-to-one mappings φi. 

 A coordinate patch or a chart refers to both Ui and φi, (Ui, φ i) 
 A coordinate system or an atlas of M {(Ui, φ i)} is defined as the set of all the charts. 

The atlas of the world map is a collection of charts. 
 Since the Ui cover all of M we write that 𝑀 = ⋃ 𝑈  . Also, since φi is one-to-one, it is 

invertible, so φ  exists and is well defined.  
 If two charts have a non-empty intersection, Ui ∩ Uj ≠ ∅, then the functions 𝜑𝑗 ◦

 𝜑 : ℝ  →  ℝ  are called transition functions.  
 A differentiable manifold is a set M, together with a collection of charts (Ui, φi), 

where 𝑀 = ⋃ 𝑈 , such that every mapping 𝜑𝑗 ◦ 𝜑 , where Ui ∩ Uj ≠ ∅, is 
differentiable. 
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(a) (b)  

Figure 11: (a) The vector 2e1 + e2 drawn at two different points p and q in the manifold ℝ . These two 
vectors are parallel to each other using a parallel transport  from vp to point q. A straight line between two points 
a and b in the manifold ℝ . It is not clear which of the vectors at q is parallel to the vector at p (Fortney, 2018). 

This defines the Manifold as space covered by coordinate charts that are invertible and 
provide continuous mappings to some subset of ℝ . A manifold of a dataset connects the 
data points of the dataset using a coordinate chart basis calculated from their rate of change 
rather than a specific coordinate system. This will be clear by the end of this section. 

Set of all vectors vp going through a data point p in Manifold M, forms a tangent space that 
is denoted by TpM or 𝑇𝑝ℝ . Figure 11 (b) shows a green sphere S ⊂ ℝ  on which 

ℝ  vectors are embedded in the tangent spaces at a point p and point q, which are the blue 
ℝ  tangent plane (or hyperplane for higher dimensions) to the manifold at these points. The 
Whitney embedding theorem states that any reasonably nice manifold can be embedded 
into ℝ  for some sufficiently large n. The basis of the TpM space is the partial differential 

operator 𝜹

𝜹𝒙𝒊
, or simplified to  𝜹𝒙𝒊, which is equivalent to basis vectors ei explained in 

chapter one, such as units of the coordinates of this space. In ℝ , 𝑇𝑝ℝ =

𝑠𝑝𝑎𝑛 , , . For vector 𝑣 ∈ 𝑇𝑝ℝ = 𝑣 + 𝑣 + 𝑣   . The Einstein 

summation notation representation is 𝑣  for ℝ . As we can see, vectors have coefficients 

with upper indices. For every point in a manifold M, we have its own tangent space. The 
collection of these tangent spaces of all points in a manifold is called the tangent bundle. As 
defined in chapter one, a vector field is an operator on which vector spaces are defined. 
Vector fields also describe a section of the tangent bundle of a manifold mapping a vector to 
a point; this will be further explained below. For each coordinate neighbourhood of M we 
have a coordinate system (x1, . . . ,xn), which allows us to write a vectors field as v = vi(x1, . . . 
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,xn) δ , where the vi are real-valued functions on M. A vector field is illustrated in Figure 
12(a).  

(a) (b)  

Figure 12: (a) A vector field drawn on the manifold ℝ . (b) A smooth vector field is drawn on the manifold ℝ . 
In both, each of the vectors shown are an element of a tangent space and not actually in the manifold ℝ (Fortney, 
2018). 

Tangent vectors are defined as smooth curves 𝛾: (−𝜖, 𝜖) ⊂ ℝ → 𝑀 such that 𝛾(0) = 𝑝 ∈ M 
and 𝜖 is just some small positive number, to avoid embedding M into some larger space ℝ  
in order to have tangent Euclidean vectors vp. The parameter that γ depends on, can be 
estimated as the time to avoid having sharp corners in a curve. If two curves have the same 
range close to p and have the same parametrization close to p they are called equivalent ∼, 
such as when you zoom on, they will be linear, not curves. The set of all equivalent curves is 
called an equivalence class:  [𝛾 ]  ≡ {𝛾|𝛾 ∼  𝛾 }. Each equivalence class of curves at a point 
p, [𝛾] , is defined to be a tangent vector at p. This defines the tangent space independent of 

any bigger space ℝ  the manifold is embedded in as 𝑇𝑝𝑀 = [𝛾] 𝛾: (−𝜖, 𝜖) ⊂ ℝ →

𝑀 𝑎𝑛𝑑 𝛾(0) = 𝑝}. Going back to correlating these equivalent curves to the vector at point 
vp, in the equivalence class definition 𝑣 = [𝛾] , 𝛾(0) = 𝑝, and we have[(𝛾 (𝑡), … , 𝛾 (𝑡))]. 
Taking the derivative of 𝛾 with respect to time and evaluating the derivative at time t = 0, 
calculates 𝑣 , 𝑣 =  [𝛾 ] = [𝛾] = [(𝛾 (𝑡), … , 𝛾 (𝑡))] =  [(𝛾 (𝑡), … , 𝛾 (𝑡))]  . This is 

calculated from the Jacobian matrix of the mapping 𝛾: (−𝜖, 𝜖) → 𝑀 as 
𝛾 (𝑡 = 0)

⋮
𝛾 (𝑡 = 0)

=

 

⎣
⎢
⎢
⎡

( )

⋮
( )

⎦
⎥
⎥
⎤

. Only the different classes of curves are important integral curves as will be 

explained below, forming different tangent vectors X, such as 𝑋 =
( )

=

∑  
( )

= ∑ 𝑋 . The following will continue using vectors but will use 

curves when needed. 
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In Figure 12(b), a smooth vector field is illustrated, which changes smoothly as you vary the 
point, such that it is possible to find curves on the manifold such that all the vectors in the 
vector field are tangent to the curves. The vector field v is called smooth if each of the 
functions vi(x1, …,xn) is differentiable an infinite number of times with respect to the 
arguments x1, . … ,xn. This means that there exists a function 𝛾: ⊂ ℝ → 𝑀 of a parameter t, 
such as time for continuity, defined as 𝛾(𝑡) = (𝛾 (𝑡), … , 𝛾 (𝑡)) that are differentiable at 

each point p in the Manifold M: 
( )

= 𝑣 , which is the system of n differential equations  

𝛾 = 𝑣 . These integral curves are used below in the directional derivatives to measure 
the rate of a change of a function 𝑓 over any curve 𝛾 passing through point p.  
 

A dual vector is an object that eats a vector and spits out a number ℝ →  ℝ. The set of all 
dual vectors of a vector space V is the dual space V*. For example, given basis 𝑒 , then 
vector v can be expressed as combinations of ei as 𝑣 = ∑ 𝑣 𝑒 , its dual vector is 
𝑣 = 𝑒 (𝑣) = 𝑣 , which is the coordinate function, or the projection of v on a specific 
coordinate i. This makes 𝑒  the basis for the dual space V* denoted below as dxi. A dual 
vector 𝑣 is a one-to-one and onto map to v as 𝑣(𝑤) = 〈𝑣. 𝑤〉. This dot product is the metric 
dual of v.  

The dual space, can also be denoted by (ℝ )∗, is the set of all functionals T on ℝ →  ℝ 
satisfying two properties: i) T(v+w) = T(v) + T(w), and ii) T(c.v) = c. T(v). The dual space of the 
TpM is  the set of all differential one forms, which will be defined below, in the tangent 
space through point p in Manifold M and is denoted by (𝑇𝑝𝑀)∗. (𝑇𝑝𝑀)∗ is the cotangent 
space and has basis coordinates from the differentials dxi, which picks the ith component of 
the vector vp ∈ 𝑇𝑝𝑀. vp is the projection of the vp vector on the ith coordinate. Therefore 
dxi(vp) is equivalent to vi. This makes the differential one forms in the (𝑇𝑝𝑀)∗space to be 
acting as coordinate functions. For example, given a point p = (2, 3), the cartesian 
coordinate functions ℝ →  ℝ are x(p) = 2, and y(p) = 3. A point exists in any other 
coordinate system, such as polar, spherical, or cylindrical. The same p point is mapped to 

the polar coordinate system using mapping functions 𝑟 = 𝑥 + 𝑦  , and 𝜃 = 𝑎𝑟𝑐𝑡𝑎 n , 

and inverse mapping functions are: x= r cos(θ ) and y = r sin(θ ). Working in the cotangent 
space using coordinate functions enables a coordinate-free approach, in which the most 
suitable coordinate system is used for any dataset.  A transformation of components is 
achieved for point p in two charts x and y. Then their coordinate vectors transform with the 

Jacobian of the coordinate transformation x↦y 𝛬 : = ∑ , and inverse 

mapping 𝛬 = 𝛬 . This is why in the tangent vector space, the  is the coordinate 

basis. For a vector v in a vector space with basis ei is represented as viei , and covector 𝜔 
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after a change of basis to 𝑒∗ is defined as 𝜔(𝑣 , … , 𝑣 ) = 𝑠𝑔𝑛(𝜋) ⋅ 𝜔 𝑣 ( ), … , 𝑣 ( )  for 
any permutation of the n elements. When 𝜔 is acting on vector v, it is defined as 𝜔 =

𝜔𝑒∗ = 𝜔(𝑣) = ∑ 𝜔 𝑣 . The transformation to the cotangent space is a change of basis 

that is captured from the Jacobian matrix. For example in ℝ ,𝜔 = 𝛿 , and 𝜔 =

𝛿 , which is the inverse of the tangent vector space, as 𝜔 = ∑   𝜔 , providing the 

cotangent vector space coordinate basis as 𝑑𝑦 = ∑   𝑑𝑥 , which is generally 

expressed as 𝑑𝑥 . For example, the cartesian to polar change of basis can be achieved using 
the Jacobian matrix determinant as: 

=
cos 𝜃 −r sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= 𝑟 cos 𝜃 +  𝑟 sin 𝜃 = 𝑟; therefore, 𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝜃. 

Figure 13 illustrates the relationships between the manifold ℝ , the tangent space 𝑇𝑝ℝ , 
and the cotangent space 𝑇∗ℝ . Although the cotangent space 𝑇∗ℝ  is attached to the 
manifold at the same point p that the tangent space 𝑇𝑝ℝ  is attached, for illustration, it is 
shown above the tangent space. In ℝ , 𝑇∗ℝ = 𝑆𝑝𝑎𝑛 𝑑𝑥 | , 𝑑𝑥 | , 𝑑𝑥 | . For differential 
form 𝛼 ∈ 𝑇∗ℝ = 𝛼 𝑑𝑥 + 𝛼 𝑑𝑥 + 𝛼 𝑑𝑥 . The Einstein summation notation 

representation is 𝛼 𝑑𝑥  for ℝ  with 𝛼  as real numbers. As we can see, covectors, that is, 
differential forms, also called coordinate functions, have coefficients with lower indices. 
Other notations and conventions need to be understood from every reference. 
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Figure 13: An illustration of the manifold ℝ3 along with the tangent space 𝑇𝑝ℝ  “attached” to the manifold 

at point p. The dual space 𝑇𝑝∗ℝ3is drawn above the tangent space which it is dual to. Notice the different ways the 
axis are labelled (Fortney, 2018). 

Differential forms start from zero-forms as normal functions/functionals that take scalar 
(one or more for multivariate functions), produce a real number, and go up to k-forms. A 
differential one-form 𝛼 ∶  𝑇 ℝ → ℝ, is defined as linear functional on the set of tangent 
vectors in ℝ  at each point p, it takes one vector as input and produces a real number that 
is its length (1-d volume) as projected on ℝ. Differential two-forms take two vectors and 
produce a real number representing their area; three-forms take three vectors and produce 
their volume, up to differential k-forms that take k-vectors and produce a real number 
representing the higher dimensional volume. Different subspace projections will be 
illustrated as we proceed. K here represents the number of coordinates (subspaces) used in 
the projection, which could be the whole dimensionality of the space n or lower down to 1.  
Figure 14 illustrates two ways to visualise differential one-form α = α1dx + α2dy + α3dz in the 
tangent space (left) and in the dual space / cotangent space 𝑇𝑝∗ℝ  (right). Notice each 
coordinate is isolated with its coefficient. The differential dfp is the linear approximation of 
the function f at the point p. In other words, the differential dfp “encodes” the tangent plane 
of f at p. Figure 15 shows the formula for the tangent plane T to the function f (x, y) at the 

point (x0, y0) as 𝑇(𝑥, 𝑦) = 𝑓(𝑥 ,  𝑦 ) +  
( , )

− (𝑥 − 𝑥 ) +
( , )

− (𝑦 − 𝑦 ). The 

figure shows vector v with end points in ℝ  is (𝑥 + 𝑣 ,  𝑦 + 𝑣 ). The tangent plane is the 
closest linear approximation of f at p. dfp can be thought of as the linear approximation of 

the function f at the point p. This is written as 𝑑𝑓 = 𝑑𝑥 + 𝑑𝑦 = ,  in ℝ  and 

extended to in ℝ as 𝑑𝑓 = 𝑑𝑥 + 𝑑𝑥 + ⋯ 𝑑𝑥 = , , … ,  which is the 

gradient vector of f, grad(f ) or ∇(f ).  

Differential one forms 𝛼 are defined as linear functional on the set of tangent vectors in ℝ  
at each point p such that 𝛼 ∶  𝑇 ℝ → ℝ.  It takes as input one vector and produces its 
length (1-d volume) as projected on ℝ. Figure 14 illustrates two ways to visualise differential 
one-form α = α1dx + α2dy + α3dz in the tangent space (left) and in the dual space / cotangent 
space 𝑇𝑝∗ℝ  (right). The left graph shows the result of the one-form acting on the vector vp 

∈ 𝑇𝑝ℝ as the projection in the −plane. The differential dfp is the linear 

approximation of the function f at the point p. In other words, the differential dfp “encodes” 
the tangent plane of f at p. Figure 15 shows the formula for the tangent plane T to the 

function f (x, y) at the point (x0, y0) as 𝑇(𝑥, 𝑦) = 𝑓(𝑥 ,  𝑦 ) + 
( , )

− (𝑥 − 𝑥 ) +

( , )
− (𝑦 − 𝑦 ). The figure shows vector v with end points in ℝ  is (𝑥 + 𝑣 ,  𝑦 + 𝑣 ). 

The tangent plane is the closest linear approximation of f at p, so dfp can be thought of as 
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the linear approximation of the function f at the point p. This is written as 𝑑𝑓 = 𝑑𝑥 +

𝑑𝑦 = [ , ] in ℝ  and extended to in ℝ as 𝑑𝑓 = 𝑑𝑥 + 𝑑𝑥 + ⋯ 𝑑𝑥 =

[ , , … , ] which is the gradient vector of f, grad(f ) or ∇(f ).  

 

Figure 14: Two different ways to visualize a differential one-form. As a linear combination of the projections 
onto the axes of the tangent space 𝑇𝑝ℝ  (left) or as dual-vectors/ co-vectors / row vectors in the cotangent space 

𝑇𝑝∗ℝ3 (right) (Fortney, 2018). 

 

Figure 15: The differential dfp takes a vector vp at some point p in Manifold ℝ2 and produces a number which 
is the rise of the tangent plane to the graph of the function as it moves from p along the vector vp. The illustration 
shows the projection on the tangent space and its equivalence with the basis coordinates at the bottom (Fortney, 
2018). 
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Figure 16: Projecting on lower dimensions (left). The parallelepiped spanned by v and w (brown) is projected 

onto the 
𝛿

𝛿𝑥1 𝑝

𝛿

𝛿𝑥2 𝑝

-plane in 𝑇𝑝ℝ  (right). We want dx1∧ dx2 to find the volume of this projected area (Fortney, 

2018). 

Figure 16 (left) shows the spaces that various vectors belong to by taking point p in ℝ , and 

vector vp from point p = 
𝑣
𝑣
𝑣

, then showing different projections such as = 
𝑑𝑥 (𝑣)

𝑑𝑥 (𝑣)

0

 in 

the tangent space 𝑇𝑝ℝ  or at point p in Manifold ℝ , 
𝑑𝑥 (𝑣)

𝑑𝑥 (𝑣)

0 ( ( ), ( ), )

  at point 

(𝑥 (𝑝), 𝑥 (𝑝), 0) in Manifold ℝ , 
𝑑𝑥 (𝑣)

𝑑𝑥 (𝑣)
 in the 2-d plane 

𝛿

𝛿𝑥1 𝑝

𝛿

𝛿𝑥2 𝑝
of 𝑇𝑝ℝ , or 

𝑑𝑥 (𝑣)

𝑑𝑥 (𝑣)
( ( ), ( ), )

 at the point (𝑥 (𝑝), 𝑥 (𝑝), 0)in the xy-plane of ℝ . 

 

Figure 16 (right) illustrates the wedge product of two one-forms to produce the area of the 
plane formed by two vectors on ℝ , the space of two-forms on ℝ  is denoted as  Λ (ℝ ) 
and illustrated in Figure 16 (right). It shows the result of the one-form acting on the vector 

vp ∈ 𝑇𝑝ℝ as the projection of vp ∈ ℝ  in the −plane of ∈ 𝑇𝑝ℝ . In Figure 16 

(right), given two vectors v and w, the area (2-d volume) is calculated using the wedge 
product ∧ defined by the determinant of the matrix formed by the appropriate elements of 
the vectors. For example: 
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  𝑣 =  
1
2
3

, 𝑤 =  
4
5
6

  then,  𝑑𝑥 ∧  𝑑𝑥
1
2
3

 
4
5
6

≡
𝑑𝑥 (𝑣) 𝑑𝑥 (𝑤)

𝑑𝑥 (𝑣) 𝑑𝑥 (𝑤)
=

1 4
2 5

=

 (1)(5)– (4)(2) =  −3, if we calculate 𝑑𝑥 ∧  𝑑𝑥
1
2
3

 
4
5
6

≡
𝑑𝑥 (𝑣) 𝑑𝑥 (𝑤)

𝑑𝑥 (𝑣) 𝑑𝑥 (𝑤)
=

 
2 5
1 4

=  (2)(4)– (5)(1) =  3. Therefore, the wedge product of two one-forms is defined 

in terms of the determinant of the appropriate vector projections. Similarly, the volume of 
other plane projections in higher dimensions can be derived from the matrix determinant. 
To generalise in the ℝ  , given v1, v2, . . . ,vn vectors, the wedge product of n one-forms is 
defined as: 

𝑑𝑥 ∧  𝑑𝑥 ∧ … .∧ 𝑑𝑥 (𝑣 , 𝑣 , … 𝑣 ) ≡

𝑑𝑥 (𝑣) 𝑑𝑥 (𝑣) … 𝑑𝑥 (𝑣)
𝑑𝑥 (𝑣) 𝑑𝑥 (𝑣) … 𝑑𝑥 (𝑣)

⋮ ⋮ ⋱ ⋮
 𝑑𝑥 (𝑣) 𝑑𝑥 (𝑣) … 𝑑𝑥 (𝑣)

 

Another formula for the determinant is given in (Fortney, 2018) as: 

𝑎 𝑎 … 𝑎
𝑎 𝑎 … 𝑎

⋮ ⋮ ⋱ ⋮
 𝑎 𝑎 … 𝑎

= 𝑠𝑔𝑛(𝜎) 𝑎 ( )

∈

 

Then 

𝑑𝑥 ∧  𝑑𝑥 ∧ … .∧ 𝑑𝑥 (𝑣 , 𝑣 , … 𝑣 ) = 𝑠𝑔𝑛(𝜎) 𝑑𝑥 𝑣

∈

 

Where Sn is The set of permutations of {1, …,n} with n! elements in it and particular 
permutation is denoted as 𝜎 such that 𝑎 ( )  is the permuted row for column i. 
There are many algebraic properties such as: 

 if we have any two of the one-forms the same, that is, ij = ik for some j ≠ k then we 
have two rows that are the same, which gives a value of zero dxi ∧ dxi = 0. 

 if i ≠ j and we switch dxi and dxj that the wedge product changes sign, dxi ∧ dxj = −dxj 
∧ dxi. This defines the anti-symmetric property of the wedge product. 

We can also find the wedge products of n-forms on subspaces projections of ℝ . Figure 17 
illustrates an example of two vectors v and w in ℝ  projected on three 2-d planes in 
𝑇𝑝ℝ and then summed up: (𝑑𝑥 ∧  𝑑𝑦 +  𝑑𝑦 ∧  𝑑𝑧 + 𝑑𝑧 ∧  𝑑𝑥)(𝑣, 𝑤) = 𝑑𝑥 ∧  𝑑𝑦(𝑣, 𝑤) +
𝑑𝑦 ∧  𝑑𝑧(𝑣, 𝑤) + 𝑑𝑧 ∧  𝑑𝑥(𝑣, 𝑤). To generalise for ℝ , the two forms on n-dimensional 
manifolds are defined by finding projections of the two vectors v, w on the appropriate two-
dimensional subspaces of 𝑇𝑝ℝ , forming the two-dimensional parallelepipeds, their 
volumes are then scaled by the appropriate factor and then summed. The only distinction is 

that 𝑇𝑝ℝ  has 
( )

 distinct two-dimensional subspaces. This is denoted as Λ ℝ , and 
generalised for Λ ℝ  for 0 <=k <= n. For example, zero-forms in ℝ : Λ ℝ =  𝑠𝑝𝑎𝑛 {1}, 
which is one-dimensional functions on ℝ ; another example is Λ ℝ =
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 span {dx ⋀ dy ⋀ dz}, which is one-dimensional three-forms in ℝ , with basis given by {dx ∧ 
dy ∧ dz}. Since the three-form dx ∧ dy ∧ dz projects three vectors u, v,w onto the 𝛿𝑥𝛿𝑦𝛿𝑧 -
subspace of 𝑇𝑝ℝ , which is the whole 𝑇𝑝ℝ . Λ ℝ is illustrated in Figure 17, as two-forms 
on ℝ , with basis given by { dx ∧ dy, dy ∧ dz , dz ∧ dx}   projects the two vectors v,w onto the 
2-d planes: 𝛿𝑥𝛿𝑦 -plane, 𝛿𝑦𝛿𝑧 -plane and 𝛿𝑧𝛿𝑥 -plane as subspaces of 𝑇𝑝ℝ . Another 
example is given as Λ ℝ  as three-forms in ℝ  with basis given by { 𝑑𝑥 ∧ 𝑑𝑥 ∧ 𝑑𝑥 , 𝑑𝑥 ∧

 𝑑𝑥 ∧ 𝑑𝑥 , 𝑑𝑥 ∧   𝑑𝑥 ∧ 𝑑𝑥 , 𝑑𝑥 ∧  𝑑𝑥 ∧ 𝑑𝑥 }   projects the three vectors u, v,w onto the 
3-d planes of 𝛿𝑥 𝛿𝑥 𝛿𝑥 , illustrated in Figure 18, and also  𝛿𝑥 𝛿𝑥 𝛿𝑥 , 𝛿𝑥 𝛿𝑥 𝛿𝑥 , 
𝛿𝑥 𝛿𝑥 𝛿𝑥  as subspaces of 𝑇𝑝ℝ .  
 

 

Figure 17: The action of the two-forms dx ∧ dy + dy ∧ dz + dz ∧ dx on two vectors v and w, projected on the 

three plans: 
𝛿

𝛿𝑥 𝑝

𝛿

𝛿𝑦
𝑝

-plane, 
𝛿

𝛿𝑦
𝑝

𝛿

𝛿𝑧 𝑝

-plane, 
𝛿

𝛿𝑧 𝑝

𝛿

𝛿𝑥 𝑝

-plane in 𝑇𝑝ℝ , and then summed up (Fortney, 2018). 
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Figure 18: Illustration of three vectors u, v,w onto the 3-d planes of δx1δx2δx3, as a subspace of 
𝑇𝑝ℝ  (Fortney, 2018). 

For arbitrary k-forms in Λ ℝ . The notation can be simplified such that we do not write all 
the elements of the basis of Λ ℝ . For example, for arbitrary two-forms in Λ ℝ , we can 
define 𝛼 = 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 . We can then generalise to 
Λ ℝ  as  𝛼 = ∑ 𝑎 𝑑𝑥 , such that I stands for elements in the set of k increasing indices i1, i2 
, …,  ik, where 1 ≤ i1 < i2 < · · · < ik ≤ n , defined as 𝐼 ∈ 𝐽( , ) = {(𝑖 , 𝑖 , … , 𝑖 )|1 ≤ 𝑖 ≤  𝑖 ≤

 … ≤ 𝑖 ≤ 𝑛}. Other examples: 

 For arbitrary three-forms in Λ ℝ , 𝐼 ∈ 𝐽 , = {123, 124, 134, 234},  we can define 

𝛼 = ∑ 𝑎 𝑑𝑥 = 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 =

 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 +

𝑎 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 ,  such that  𝑑𝑥 = 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥  and so forth. 

 For arbitrary two-forms in Λ ℝ , 𝐼 ∈ 𝐽 , = {12, 13, 14, 23, 24, 34}, we can define 

𝛼 = ∑ 𝑎 𝑑𝑥 = 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 + 𝑎 𝑑𝑥 +

𝑎 𝑑𝑥  = 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀  𝑑𝑥 +

𝑎 𝑑𝑥  ⋀ 𝑑𝑥 + 𝑎 𝑑𝑥  ⋀ 𝑑𝑥 , such that 𝑑𝑥 = 𝑑𝑥  ⋀ 𝑑𝑥  and so forth  

Given  𝛼 ∈  Λ ℝ , and  𝛽 ∈  Λ ℝ , where 𝛼 = ∑ 𝑎 𝑑𝑥  and 𝛽 = ∑ 𝑏 𝑑𝑥 defined as above, 

then 𝛼 ⋀ 𝛽 =  ∑ (𝑎 𝑑𝑥 ) ⋀ ∑ (𝑏 𝑑𝑥 ) = ∑ 𝑎 𝑏 𝑑𝑥 ⋀ 𝑑𝑥 =

∑ ∑ ±∪ , ,    𝑎 𝑏 𝑑𝑥 . If I and J are disjoint then we have 𝑑𝑥 ⋀ 𝑑𝑥 = ± 𝑑𝑥  
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where K = I ∪ J, but is reordered to be in increasing order and elements with repeated 
indices are dropped. 

For example, given 𝛼 ∈  Λ ℝ = ∑ 𝑎 𝑑𝑥 = 5𝑑𝑥  ⋀ 𝑑𝑥 − 6𝑑𝑥  ⋀ 𝑑𝑥 + 7𝑑𝑥  ⋀ 𝑑𝑥 +

2𝑑𝑥  ⋀  𝑑𝑥 , where I has the elements of the set {12, 24, 17, 28} as a ⊂ J2,8 and the 
coefficients are a12 = 5, a24 = −6, a17 = 7, and a28 = 2. Given also, 𝛽 ∈  Λ ℝ = ∑ 𝑏 𝑑𝑥 =

3𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 − 4𝑑𝑥  ⋀ 𝑑𝑥  ⋀ 𝑑𝑥 , where I has the elements of the set {358, 568} as a 
⊂ J3,8 and the coefficients are b358 = 3, and b568 = -4 , then 𝐼 ∪   𝐽 =

{12358, 24358, 17358, 28358, 12568, 24568, 17568, 28568} . Both 28358 and 28568 
repeat the 8, since 𝑑𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 = 0 and 𝑥  ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 ⋀ 𝑑𝑥 = 0, 
then we can drop them. K, after having the indices in increasing order, will be K = 
{12358, 23458, 13578, 12568, 24568, 15678}. Therefore, 𝛼 ⋀ 𝛽 =

  ∑ ∑ ±∪ , ,    𝑎 𝑏 𝑑𝑥 =  𝑎 𝑏 𝑑𝑥 + 𝑎 𝑏 𝑑𝑥 +

𝑎 𝑏 𝑑𝑥 + 𝑎 𝑏 𝑑𝑥 + 𝑎 𝑏 𝑑𝑥 + 𝑎 𝑏 𝑑𝑥 . 

The general formula is given as 𝛼 ⋀ 𝛽 (𝑣 , 𝑣 , … 𝑣 ) =

! !
 ∑ 𝑠𝑔𝑛(𝜎)𝛼(𝑣 ( ), 𝑣 ( ), … 𝑣 ( ))𝛽((𝑣 ( ), 𝑣 ( ), … 𝑣 ( ))∈ , this means that 

𝜎 is a(k+l)−shuffle. 

The general formula is given as 𝛼 ⋀ 𝛽 (𝑣 , 𝑣 , … 𝑣 ) =

! !
 ∑ 𝑠𝑔𝑛(𝜎)𝛼(𝑣 ( ), 𝑣 ( ), … 𝑣 ( ))𝛽(𝑣 ( ), 𝑣 ( ), … 𝑣 ( ))∈ , this means that 

𝜎 is a(k+l)−shuffle. 

In tensor form, this is expressed as 𝛼 ⋀ 𝛽 =
( )!

! !
𝒜(𝛼 ⨂ 𝛽), where 𝒜 is the skew-

symmetrisation (or anti-symmetrisation) operator that takes a tensor and returns its 
differential form as skew-symmetric and ⨂  is the tensor product as defined in chapter 
one. This is also called anti-symmetric multilinear covectors, because it takes a number of 
vectors and gives a number, changing sign if we reorder its input vectors. This completes the 
definition of the wedge product of n-forms as calculating the volume of the parallelopiped 
formed by the n input vectors as column vectors in the matrix from which the determinant 
is calculated. Other operators can be defined as follows: 

 The inner product between vector and k-form: given vector v and k-form 𝛼, their 
inner product is defined as: 𝑖 𝛼 (𝑣1, 𝑣 , … 𝑣 ) = 𝛼 (𝑣, 𝑣1, 𝑣 , … 𝑣 ), i.e. the 

resulting (k-1)-form puts the vector v in front. 

 The inner product between vector and two added k-forms: given vector v and two 
k-form 𝛼 & 𝛽, their inner product is defined as: 𝑖 (𝛼 + 𝛽) =  𝑖 𝛼 +  𝑖 𝛽. 

 The inner product between two vectors and k-form: given two vectors v & w, and k-
form 𝛼, their inner product is defined as: 𝑖( )𝛼 =  𝑖 𝛼 +  𝑖 𝛼. 
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 Inner Product between two k-forms:  Given two one-forms 𝛼, β in ℝ : which  ∈

Λ1ℝ3
=  span {dx, dy, dz} =  Tp∗ℝ , which is three-dimensional vector space, such 

that 𝛼 =  𝑎𝑑𝑥 +  𝑏𝑑𝑦 +  𝑐𝑑𝑧 =  [𝑎, 𝑏, 𝑐], β =  𝑟𝑑𝑥 +  𝑠𝑑𝑦 +  𝑡𝑑𝑧 =  [𝑟, 𝑠, 𝑡] , 
their inner product is defined as:   

⟨𝛼, 𝛽 ⟩ =  ⟨[𝑎, 𝑏, 𝑐], [𝑟, 𝑠, 𝑡]⟩ ≡ [𝑎, 𝑏, 𝑐]
1 0 0
0 1 0
0 0 1

 [𝑟, 𝑠, 𝑡] = [𝑎, 𝑏, 𝑐]
𝑟
𝑠
𝑡

= 𝑎𝑟 + 𝑏𝑠 + 𝑐𝑡 

o Another example: given two two-forms 𝜂, 𝜉 in ℝ : Λ ℝ =

 span {dx ⋀ dy , dy ⋀ dz , dz ⋀ dx}, which is three dimensional vector space 

such that 𝜂 =  𝑎(dx ⋀ dy), b(dy ⋀ dz), c( dz ⋀ dx) =  [a, b, c], 𝜉 =

 𝑟(dx ⋀ dy), s(dy ⋀ dz), t( dz ⋀ dx) =  [r, s, t]; their inner product is defined 
as   

⟨𝜂, 𝜉 ⟩ =  ⟨[𝑎, 𝑏, 𝑐], [𝑟, 𝑠, 𝑡]⟩ ≡ [𝑎, 𝑏, 𝑐]
1 0 0
0 1 0
0 0 1

 [𝑟, 𝑠, 𝑡] = [𝑎, 𝑏, 𝑐]
𝑟
𝑠
𝑡

= 𝑎𝑟 + 𝑏𝑠 + 𝑐𝑡 

 Hodge star operator: or Hodge star dual operator takes a k-form in ℝ  𝑡𝑜 (𝑛 − 𝑘) −

𝑓𝑜𝑟𝑚 𝑎𝑠: ∗ : Λ𝑘ℝ𝑛
→ Λ𝑛−𝑘ℝ𝑛, such that α in Λ ℝ  has an equivalent ∗ 𝛼  in 

Λ ℝ  such that 𝛼 ⋀ β = <∗ 𝛼 , β > σ for all β, where <., .> is the inner product 

that associate a real number to a pair of vectors or differential forms, here both are 

Λ ℝ , and σ is the n dimensional volume form. Notice that <., .> if containing an 

one-form and a vector , it is canonical pairing between them as used earlier.  This 
means that the Hodge star, takes an n-form as input, and uses the inner product of 
the n-k forms (which produces a scalar) to multiply with an n-form σ. This unique 
mapping between 𝛼 and ∗ 𝛼 is valid for any chosen β. The derivation is lengthy, but 

interesting symmetry is noticed as *1 = dx ∧ dy , dx = *dy, *dy = dx in ℝ , *1 = dx ∧ 

dy∧ dz,  ∗dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗dz = dx ∧ dy in ℝ , *1 = dx1 ∧ dx2 ∧ dx3 ∧ dx4,  
∗dx1 = dx2 ∧ dx3 ∧ dx4, ∗dx2 = dx1 ∧ dx3 ∧ dx4, ∗dx3 = dx1 ∧ dx2 ∧ dx4, and ∗dx4 = dx1 ∧ 

dx2 ∧ dx3 in ℝ , and so forth. Also Hodge star operator can be applied on k-forms in 

ℝ  , and higher such as ∗ (dx ∧ dy ∧ dz) = 1 in ℝ  , ∗(dx1 ∧ dx2) as two forms in ℝ , 

∗(dx1 ∧ dx3)  as two forms in ℝ , ∗(dx1 ∧ dx2 ∧ dx3) as three forms in ℝ , ∗(dx1 

∧ dx2 ∧ dx3 ∧ dx4)  as four forms in ℝ and so forth for any value of k <= any value 
for n, both > 0. 
 

The intuition behind these different spaces, and their implications in machine learning, is 
focused on multi-way associations of n features’ weights on the function output that is 
estimated to represent a dataset. This means, instead of learning a weight for each 
feature/column/dimension in the dataset, you can learn a combined weight for every n-k 
permutation of the features, where 0 <=k <= n, and then reduce the dimensionality by 
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ignoring the irrelevant mapping and focus on the strongly correlated mapping with the 
output. From the 1 to n-dimensional, the Hodge star operator uses symmetry to reduce the 
number of combinations required.  For example, a price of a house can be a function of 
many features. These features are combined in multiple different factors that can be 
estimated. A neighbourhood factor might be combined from the distance of the nearest 
business area, area pollution measures, demographics of people, crime rate, and many 
other features related to the quality of the neighbourhood. Some other groups of features 
might be combined as house-specific features, such as the number of rooms, land area, built 
land area, renovations, number of floors, and others. Standardisation unifies the unit of 
measures in a dataset such that the net weight of each feature is not affected by the 
different measures used in collecting the data. Also, combining together different features 
forming one coordinate against the remaining coordinates for the remaining combinations, 
then estimating a weight for each new coordinate, reveal the multi-way correlations of the 
dataset. 

3.4.2.1 Directional Derivatives 

In chapter one, real-valued functions’ total derivative 𝑓: ℝ → ℝ was introduced to describe 
the rate of change of the function output with respect to the displacement of a point and 
the slope of the tangent line at the given point. If the function is differentiable, then the 
total derivative is known as the gradient. This is a directional derivative in the direction of 
only one variable. 

Also, in chapter one, the partial/directional derivative was defined for multivariable 
functions as 𝑓: ℝ → ℝ in the direction of a specific variable displacement, treating other 
variables as constants. This calculates the rate of change of the function output as the 
function moves in the direction of the variable used in the differentiation. A partial 
derivative has more options in the direction and needs a vector 𝑣  to define it, such as  

𝑑𝑓 𝑣 = 𝑣 [𝑓] = lim
→

( )
, where d is the operator that, given a function f (zero-

form) as input, yields a one-form output. The directional derivative is the dot product of the 
gradient with the desired direction.  The Jacobian matrix is the matrix of all partial 
derivatives explaining all ways the output and input are related, providing a total derivative 
from the partials. It approximates the function for a given point and estimates the change as 
the function moves along a vector from this point. This is achieved by dot product the 
Jacobian matrix with this vector yielding a vector. This vector is in the new Manifold with a 
new coordinate system; therefore, the Jacobian matrix is a mapping function between two 
coordinate systems. 
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Exterior differentiation d is the extended directional derivative when given zero-forms, as in 
vector calculus. In a coordinate-free approach, when given one-forms and higher k-forms, 
exterior differentiation extends the vector derivative by contracting the differential form by 
a given vector v, yielding a k+1-form output. Vector v provides the direction of the 
displacement required for the differentiation.  

The local (in-coordinates 𝒙𝒊) exterior derivative of k-form 𝛼 (which itself is defined as 
differential forms) is 𝑑𝛼 = ∑ 𝑑𝑓 ⋀ 𝑑𝑥  where 𝑓 are functions or zero-forms. For example, 
given 𝛼 =  𝑓 𝑑𝑥 + 𝑓 𝑑𝑦 is a one-form on the manifold ℝ2 for some functions 𝑓 , 𝑓 : ℝ →

ℝ, then:  

𝑑𝛼 = 𝑑𝑓  ∧  𝑑𝑥 + 𝑑𝑓   ∧  𝑑𝑦 

=
𝛿𝑓

𝛿𝑥
𝑑𝑥 +

𝛿𝑓

𝛿𝑦
𝑑𝑦 ∧  𝑑𝑥 +

𝛿𝑓

𝛿𝑥
𝑑𝑥 +

𝛿𝑓

𝛿𝑦
𝑑𝑦  ∧  𝑑𝑦 

= 
𝑑𝑥 ⋀ 𝑑𝑥

             

 + 
𝑑𝑦 ⋀ 𝑑𝑥

⋀
 + 𝑑𝑥 ⋀ 𝑑𝑦 +

𝑑𝑦 ⋀ 𝑑𝑦

             

 

=
𝛿𝑓

𝛿𝑥
−

𝛿𝑓

𝛿𝑦
𝑑𝑥 ∧  𝑑𝑦 

Given two vectors 𝑣 = 𝑣
𝛿

𝛿𝑥
+ 𝑣

𝛿

𝛿
=

𝑣
𝑣  and 𝑤 = 𝑤

𝛿

𝛿𝑥
+ 𝑤

𝛿

𝛿
=

𝑤
𝑤 , then 

𝑑𝛼(𝑣, 𝑤) =
𝛿

𝛿𝑥
−

𝛿

𝛿
𝑑𝑥 ⋀ 𝑑𝑦(𝑣, 𝑤) 

=
𝛿𝑓

𝛿𝑥
−

𝛿𝑓

𝛿𝑦

𝑑𝑥(𝑣) 𝑑𝑥(𝑤)

𝑑𝑦(𝑣) 𝑑𝑦(𝑤)
 

=
𝛿𝑓

𝛿𝑥
−

𝛿𝑓

𝛿𝑦

𝑣 𝑤
𝑣 𝑤  

=
𝛿𝑓

𝛿𝑥
−

𝛿𝑓

𝛿𝑦
(𝑣 𝑤 − 𝑤 𝑣 ) 

= 𝑣 𝑤
𝛿𝑓

𝛿𝑥
− 𝑣 𝑤

𝛿𝑓

𝛿𝑦
− 𝑤 𝑣

𝛿𝑓

𝛿𝑥
+ 𝑤 𝑣

𝛿𝑓

𝛿𝑦
 

Exterior differentiation with constant vector fields is illustrated in Figure 19. The one form 
𝛼 on the manifold ℝ  is a mapping 𝛼: 𝑇 ℝ → ℝ, with a given vector v on the manifold ℝ , 

then for each 𝑝 ∈ ℝ , we have 𝛼 𝑣 ∈ ℝ is a real number. Therefore 𝛼(𝑣) is a function 
on the manifold ℝ , with input as point p and output as real numbers. This is denoted < 𝛼, 
v>, where the notation <·, ·> means the canonical pairing between a one-form/covector and 
a vector. This can be < 𝛼, (v1, v2, … vk)> for k-form 𝛼. 
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Figure 19: The one-form 𝛼(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) 𝑑𝑥 + 𝑓 (𝑥, 𝑦) 𝑑𝑦 on the manifold ℝ  is made up of two functions 

𝑓 , 𝑓 : ℝ → ℝ, shown above. Once we are given a vector field v on a manifold in ℝ , here the constant vector field 
𝑣 =  𝑣 𝛿𝑥 + 𝑣 𝛿𝑦 , then this can be used to find the real-valued function < 𝛼, 𝑣 > =  𝑣 𝑓 +  𝑣 𝑓 , which can be 
viewed as a linear combination of the two functions  𝑓 , 𝑓 . The directional derivative of this function can then be 
found in the direction of another given vector 𝑤 =  𝑤 𝛿𝑥 + 𝑤 𝛿𝑦  . Here the differential d<α, v>  in essence 
encodes the information about the tangent plane to the function < 𝛼, 𝑣 >, shown in green (Fortney, 2018). 

 
The global (coordinate-free or invariant) exterior differentiation formula works well in any 
coordinates such as cartesian, polar, spherical, cylindrical, etc. Given 2-form 𝛼, the global 
exterior derivative is defined as 𝑑𝛼 (𝑣, 𝑤) = 𝑣[𝛼(𝑤)] − 𝑤[𝛼(𝑣)] −  𝛼([𝑣, 𝑤]), where v[f] is 
one notation for the directional derivative of 𝑓 in the direction of v, [v,w] is the lie-bracket 
of two vector fields v and w, which is defined by [v,w] = vw − wv. Lie brackets will be further 
explained in chapter 5. This is extended to the k-form as 𝑑𝛼 (𝑣 , 𝑣 , … , 𝑣 ) =

∑ (−1) 𝑣 [𝛼(𝑣 , 𝑣 , … 𝑣 , … , 𝑣 )] + ∑ (−1) 𝛼 𝑣 , 𝑣 , (𝑣 , 𝑣 , … 𝑣 , … , 𝑣 … , 𝑣 ) , 
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such that the hat of a vector means omitting the vector. The derivation can be found in 
(Fortney, 2018). 

For example, given non-constant vector fields 𝑓, 𝑔: ℝ → ℝ, the exterior differentiation is 

defined as 𝑑𝑓 = 𝑑𝑥 + 𝑑𝑦 and 𝑑𝑔 = 𝑑𝑥 + 𝑑𝑦, their wedge product is  

𝑑𝑓 ∧  𝑑𝑔 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 ⋀

𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦  

=
𝜕𝑓

𝜕𝑥
𝑑𝑥⋀

𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑦
𝑑𝑦⋀

𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦  

=
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑥

𝑑𝑥 ∧  𝑑𝑦

             

+
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
𝑑𝑥 ∧  𝑑𝑦 +

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝑑𝑦 ∧  𝑑𝑥

 ∧ 
+

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑦

𝑑𝑦 ∧  𝑑𝑦

             

 

=
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
𝑑𝑥 ∧  𝑑𝑦 −

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥
𝑑𝑥 ∧  𝑑𝑦 

=
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
−

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥
𝑑𝑥 ∧  𝑑𝑦 

=

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦
 
𝑑𝑥 ∧  𝑑𝑦

 
 

You can see how this extends to 𝑓, 𝑔, ℎ: ℝ → ℝ , we have: 

𝑑𝑓 ∧  𝑑𝑔 ∧  𝑑ℎ =

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕ℎ

𝜕𝑧

𝑑𝑥 ∧  𝑑𝑦 ∧  𝑑𝑧

 
  

For example, given 𝑥 =  𝑟 cos(𝜃)and 𝑦 =  𝑟 sin(𝜃), then  

𝑑𝑥 ∧  𝑑𝑦 =

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝑟
𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝑟

𝑑𝜃 ∧  𝑑𝑟 =

𝜕𝑟 cos(𝜃)

𝜕𝜃

𝜕𝑟 cos(𝜃)

𝜕𝑟
𝜕𝑟 sin(𝜃)

𝜕𝜃

𝜕𝑟 sin(𝜃)

𝜕𝑟

 𝑑𝜃 ∧  𝑑𝑟 
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=
−𝑟 sin(𝜃) cos(𝜃)

𝑟 cos(𝜃) sin(𝜃)
𝑑𝜃 ∧  𝑑𝑟 = (−𝑟 sin (𝜃) − 𝑟 cos (𝜃))𝑑𝜃 ∧  𝑑𝑟 

= −𝑟𝑑𝜃 ∧  𝑑𝑟 

This describes a polar change of coordinates. Another example of coordinate change is given 
the new coordinates as u = x + y and v = x – y to map points in the plane ℝ → ℝ , such 
that the area in an xy-plane: 

𝑑𝑥 ⋀ 𝑑𝑦

1
0 ( , )

,
0
1 ( , )

  

=
1 0
0 1

= 1 and 

𝑑𝑢 ⋀ 𝑑𝑣

1
1 ( , )

,
1

−1 ( , )

   

=
1 1
1 −1

= −2, we can define 𝑑𝑢 ⋀ 𝑑𝑣 in terms of 

𝑑𝑥 ⋀ 𝑑𝑦 as  𝑑𝑢 = 𝑑(𝑥 + 𝑦) = 𝑑𝑥 + 𝑑𝑦, and 𝑑𝑣 = 𝑑(𝑥 − 𝑦) = 𝑑𝑥 − 𝑑𝑦, then 𝑑𝑢 ⋀ 𝑑𝑣 =

(𝑑𝑥 + 𝑑𝑦) ⋀(𝑑𝑥 − 𝑑𝑦), then simplified to 𝑑𝑢 ⋀ 𝑑𝑣 = −2𝑑𝑥 +𝑑𝑦. The inverse mapping is as 

follows: 𝑥 = (𝑢 + 𝑣), and 𝑦 = (𝑢 − 𝑣), then 𝑑𝑥 = 𝑑 (𝑢 + 𝑣) = 𝑑𝑢 + 𝑑𝑣  and 

𝑑𝑦 = 𝑑 (𝑢 − 𝑣) = 𝑑𝑢 − 𝑑𝑣, then 𝑑𝑥 ⋀ 𝑑𝑦 = 𝑑𝑢 + 𝑑𝑣 ⋀ 𝑑𝑢 − 𝑑𝑣 , then 

simplified to 𝑑𝑥 ⋀ 𝑑𝑦 = − 𝑑𝑢 ⋀ 𝑑𝑣. The volume of mapped vectors as shown in Figure 20 is 

double the size as expected from the equations above, and the negative sign is because of 
the counter clockwise rotation.  

 
Figure 20: The basis vectors in the xy-plane mapped to two vectors in the uv-plane. Notice the orientation 

changes 

The above examples implicitly rely on a specific coordinate system using a single coordinate 
patch (Ui, φi ). However, a general manifold does not have a single coordinate system. 
Instead, it has an atlas {(Ui, φi)} of coordinate patches (Ui, φi). The same argument and 
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computation can be done on each of the many coordinate patches. This means that on each 
of the many coordinate patches we found a formula that gives the exterior derivative of a 
differential form dUi, as long as that form is written in the coordinates of that particular 
coordinate patch. For Ui ∩ Uj ≠ ∅,  if dUi exists and is unique on Ui and dUj exists and is unique 
on Uj , then on Ui ∩ Uj we must have dUi = dUj = d. Since this is true on the intersection of all 
coordinate patches, then we have d existing and unique globally, that is, over 𝑀 = ⋃ 𝑈  . 

Push-forward of a vector moves it from one manifold to another or the same manifold with 
a different coordinate system. This is often called tangent mapping. Given the coordinate 
change ℝ → ℝ , mapping function 𝑓(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥 − 𝑦) = (𝑢, 𝑣) explained above, 
we can use the Jacobian Matrix to do the mapping from a point in ℝ  to a point in ℝ . 
Given a point p = (1, 1) and vp from this point = (1, 2) we evaluate the Jacobian Matrix 
𝐷 𝑓: 𝐷 ℝ → 𝐷 ( )ℝ  for point (x, y): 

( , )

=

( ) ( )

( ) ( )

( , )

=
1 1
1 −1 ( , )

, then apply the mapping on vp: to get 

its mapping (push-forward) in ℝ  for the mapped point f(p): 

( , )

=

( ) ( )

( ) ( )

( , )

=
1 1
1 −1 ( , )

, then apply the mapping on vp: to get 

its mapping (push-forward) in ℝ  for the mapped point f(p): 

𝐷 𝑓. 𝑣 =
1 1
1 −1 ( , )

.
1
2 ( , )

=
1.1 + 1.2
1.1 ± 1.2 ( , )

=
3

−1
( , )

=
3

−1 ( , )
, this push-

forward changed the basis from point (1, 1) to the mapped point (2,0). This is generalised as 

the Jacobian mapping at point p as: 𝐷 𝑓 =

𝑓 𝑓
…

𝑓

𝑓 𝑓
…

𝑓

⋮ ⋮ ⋱ ⋮

 
𝑓 𝑓

…
𝑓

 

Pull-back of a differential form moves it from one manifold to another manifold or the same 
manifold with a different coordinate system. This is often called the cotangent mapping 
𝐷∗𝑓, and is dual to the push-back of vectors. Given the coordinate change ℝ → ℝ , 
mapping function 𝑓 explained above, 

∗ .(  ∧ ),

  (  ∧ )
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1 1
1 −1

. (𝑑𝑥 ∧  𝑑𝑦)
1
0

,
0
1

= (𝑑𝑢 ∧  𝑑𝑣) ( ) 𝐷 𝑓.
1
0

, 𝐷 𝑓.
0
1

 

                               
  ℝ

                               
   

 ℝ → ( )ℝ

 

                              ( )( )                           
          

                                                                                              
         

 
This is simplified to −2𝑑𝑥 ⋀ 𝑑𝑦 = 𝑑𝑢 ⋀ 𝑑𝑣 such that the −2𝑑𝑥 ⋀ 𝑑𝑦 is the pull-back of 
𝑑𝑢 ⋀ 𝑑𝑣. This is generalised to ℝ , given the mapping function (change in basis) 
𝜑: ℝ( ,…, ) → ℝ

𝜑 ,…,𝜑  and a volume form 𝑑𝜑  ∧   …  ∧    𝑑𝜑    , the pull-back is defined 

as (omitting the point p): 

𝐷∗𝜑. 𝑑𝜑  ⋀  …   ⋀  𝑑𝜑 =

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑥
…

𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑥
…

𝜕𝜑

𝜕𝑥
⋮ ⋮ ⋱ ⋮

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑥
…

𝜕𝜑

𝜕𝑥

𝑑𝑥  ⋀  …   ⋀  𝑑𝑥   

This is for mapping between Manifolds of the same dimensions and for volume forms 
only, not the general differential forms. A general map 𝜑: ℝ → ℝ  is defined as 
𝜑(𝑥1, … , 𝑥𝑛 ) = 𝜑  (𝑥1, … , 𝑥𝑛 ), … , 𝜑  (𝑥1, … , 𝑥𝑛 ), and the Jacobian 𝐷𝜑 =

𝜕 1

𝜕𝑥1

𝜕 1

𝜕𝑥2
… 𝜕 1

𝜕𝑥𝑛

𝜕 2

𝜕𝑥1

𝜕 2

𝜕𝑥2
… 𝜕 2

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕 𝑚

𝜕𝑥1

𝜕 𝑚

𝜕𝑥2
… 𝜕 𝑚

𝜕𝑥𝑛

 and input k-form 𝛼 ∈ Λ ℝ , the pull-back yields a k-form 

∈ Λ ℝ  is defined as follows: 

(𝐷∗𝜑. 𝛼)(𝑣 , … , 𝑣 ) ≡ 𝛼 𝐷𝜑. 𝑣 , … , 𝐷𝜑. 𝑣  

For the above simple linear mapping example, we have: 𝐷∗𝜑. (𝑣𝑑𝑢 + 𝑢𝑑𝑣) = 2𝑥𝑑𝑥 +

2𝑦𝑑𝑦. The derivation and more examples of other coordinate mappings can be found in 
(Fortney, 2018).  

In chapter one, vector spaces are defined as the set of vectors, including the zero vector and 
another vector that, when added or multiplied by a scalar, produces vectors that belong to 
this space. Vector fields are defined above as sections of manifolds because they provide a 
mapping between each vector in a given vector space and a point. In ℝ , a vector field 𝔽 is 
defined as 𝔽 = P(x, y, z)i, Q(x, y, z)j, R(x, y, z)k, such that 𝑃, 𝑄, 𝑅: ℝ → ℝ and I, j, k are the 
unit vectors in x, y, and z coordinates, defined as e1, e2, and e3, respectively. The operator 
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∆ is defined as ∆= 𝑒 + 𝑒 + 𝑒 , which is the gradient when applied on a function 

(zero-form), turning it into a vector field: ∆𝑓 = 𝑖 + 𝑗 + 𝑘 = + +  . 

In chapter one, the integration in the vector calculus was defined using the Riemann sums 
operator∫ 𝑓(𝑥)𝑑𝑥. Similarly, we can define the integration of differential forms as a 
generalisation of the vector calculus integration to differential forms. For example, in ℝ , 
we integrate the differential form 𝛼 = 𝑓(𝑥, 𝑦) 𝑑𝑥  ⋀ 𝑑𝑦, as  ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑥 ∧  𝑑𝑦, which 
keeps track of the orientation (order/sign of the coordinates) and generalises to  ℝ  as 
∫ … ∫ 𝑓(𝑥 , … , 𝑥 ) 𝑑𝑥   ∧ … ∧  𝑑𝑥 . In the coordinate-free approach, the integration over 

differential forms works when given a mapping ℝ ,…, → ℝ ,…,  and is defined as : 

∫ 𝑓(𝑥 , … , 𝑥 ) 𝑑𝑥   ∧ … ∧  𝑑𝑥 = ∫ 𝑓 ∘ 𝜙 (𝜙 , … , 𝜙 ) 𝑇∗𝜙 . (𝑑𝑥   ∧ … ∧  𝑑𝑥 )
( )

 , 

such that the left-hand side shows the integral taking place in 𝑥 , … , 𝑥 − coordinates and 
integrates the function 𝑓(𝑥 , … , 𝑥 ) over the region R using the volume form 𝑑𝑥   ∧ … ∧

 𝑑𝑥  associated with the 𝑥 , … , 𝑥 − coordinates. The right-hand side shows the region we 
are integrating over in ℝ ,…,  is its image 𝜙(𝑅). The function 𝑓 ∘ 𝜙  is a function in the 

variables 𝜙 , … , 𝜙 , and pull-back of the area-form  𝑇𝜙 . (𝑑𝑥   ∧ … ∧  𝑑𝑥 ), and not the 
area form 𝑑𝜙   ∧ … ∧  𝑑𝜙  , which is essential when a change of variables is needed. 

Divergence measures how vector fields vary, diverge or spread out at a given point. This is 
defined for 𝔽 as the dot product of ∆ with the vector field F in cartesian coordinates (x, y, z):  

𝑑𝑖𝑣 𝔽 = ∆. 𝔽 =
𝜕

𝜕𝑥
𝑒 +

𝜕

𝜕𝑦
𝑒 +

𝜕

𝜕𝑧
𝑒 . (𝑃𝑒 + 𝑄𝑒 + 𝑅𝑒 ) =  

𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
+

𝜕𝑅

𝜕𝑧
 

 
The flux of the vector field 𝔽 through the surface S is a measure of vector flow over a 
surface. This can measure fluid flow over a surface, electricity flow, magnetic field flow, and 
others. To abstract this flow without fluid density or other physical interpretations for a 
given problem, the flux at each point p on the surface S we have that 𝔽 . 𝑛  is a real 
number. That is, we can think of 𝔽. 𝑛 as a real-valued function on S, 𝔽. 𝑛 : S → ℝ, which 
means we can easily integrate it over the surface S. 

𝐹𝑙𝑢𝑥 𝑜𝑓  𝔽 = lim
|∆ |→

𝔽. 𝑛∆𝑆 = 𝔽. 𝑛𝑑𝑆 

dS comes from the ΔS, which represents the area-form of a small bit of surface S. 
 
This derives the divergence at a given point in a surface as follows. Given a small three-
dimensional region V about the point (x0, y0, z0) with boundary ∂V and volume ΔV the 
divergence of 𝔽 at (x0, y0, z0), and ∂V is a closed surface like a sphere with no edges, and the 
normal vector 𝑛 point outwards from the ∂V surface, is defined by: 
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𝑑𝑖𝑣 𝔽 = lim
∆ →

1

∆𝑉
𝔽. 𝑛𝑑𝑆 

 
In cylindrical coordinates (r, θ, z), the divergence of vector 𝑓𝑖𝑒𝑙𝑑 𝔽 = 𝔽 𝑒 + 𝔽 𝑒 + 𝔽 𝑒  
is defined as: 

𝑑𝑖𝑣 𝔽 =
1

𝑟

𝜕(𝑟𝔽 )

𝜕𝑟
+

1

𝑟

𝜕𝔽

𝜕θ
+

𝜕𝔽

𝜕𝑧
 

In spherical coordinates (r, θ, φ), the divergence of vector field 𝔽 = 𝔽 𝑒 + 𝔽 𝑒 + 𝔽𝜑𝑒𝜑 is 
defined as: 

𝑑𝑖𝑣 𝐹 =
1

𝑟

𝜕(𝑟 𝔽 )

𝜕𝑟
+

1

𝑟 sin (θ)

𝜕(sin(θ) 𝔽 )

𝜕θ
+

1

𝑟𝑠𝑖 n(𝜃)

𝜕𝔽

𝜕𝜑
 

Curl also measures how vector fields vary, such as the “circulation” per unit area of vector 
field F over an infinitesimal path around some point. For the same vector field defined 
above for the cartesian coordinates, the curl is defined as the cross product for the same 
operator ∆ defined above and the vector field: 

𝑐𝑢𝑟𝑙 𝔽 = ∆ × 𝔽 =  
𝜕𝑅

𝜕𝑦
−

𝜕𝑄

𝜕𝑧
𝑖 +

𝜕𝑃

𝜕𝑧
−

𝜕𝑅

𝜕𝑥
𝑗 +

𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
𝑘 

Given S as a surface bounded by the closed curve C = ∂S, ΔS is the area of that surface, 𝑛 is 
the unit normal vector to that surface, the s in ds is the infinitesimal arc length element, and 
the surface area ΔS shrinks to zero about the point (x0, y0, z0), and �̂�  as the unit 
tangent vectors to C. Then, the curl 𝔽 at a point (x0, y0, z0) is defined as: 

𝑛. 𝑐𝑢𝑟𝑙 𝔽 = lim
|∆ |→

1

∆𝑆
𝔽. �̂�𝑑𝑠 

The definition of curl derives the Stokes’ theorem. Given any surface S, not necessarily in a 
plane, whose boundary is the closed curve C, we can break up at surface into sub-surfaces Si 
with boundaries Ci, if two Ci share an edge, the terms cancel out, and we end up with the 
Stokes theorem stated below. 

In cylindrical coordinates (r, θ, z), the curl of vector field 𝔽 = 𝔽 𝑒 + 𝔽 𝑒 + 𝔽 𝑒  is defined 
as: 

𝑐𝑢𝑟𝑙 𝔽 = (𝑐𝑢𝑟𝑙 𝔽) 𝑒 + (𝑐𝑢𝑟𝑙 𝔽) 𝑒 + (𝑐𝑢𝑟𝑙 𝔽) 𝑒 , where: 

(𝑐𝑢𝑟𝑙 𝔽) =
𝔽

−
𝔽 ,  

(𝑐𝑢𝑟𝑙 𝔽) =
𝔽

−
𝔽 , and 
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(𝑐𝑢𝑟𝑙 𝔽) =
1

𝑟

𝜕(𝑟𝔽 )

𝜕r
−

1

𝑟

𝜕𝔽

𝜕θ
 

In spherical coordinates (r, θ, φ), curl of vector field 𝔽 = 𝔽 𝑒 + 𝔽 𝑒 + 𝔽𝜑𝑒𝜑 is defined as: 

𝑐𝑢𝑟𝑙 𝔽 = (𝑐𝑢𝑟𝑙 𝔽) 𝑒 + (𝑐𝑢𝑟𝑙 𝔽) 𝑒 + (𝑐𝑢𝑟𝑙 𝔽)𝜑𝑒 𝜑, where: 

(𝑐𝑢𝑟𝑙 𝔽) =
 ( )

( )𝔽𝜑 −
 ( )

𝔽

𝜑
,  

(𝑐𝑢𝑟𝑙 𝔽) =
 ( )

𝔽

𝜑
−

( 𝔽𝜑)
, and 

(𝑐𝑢𝑟𝑙 𝔽)𝜑 =
1

𝑟

𝜕(𝑟𝔽 )

𝜕r
−

1

𝑟

𝜕𝔽

𝜕θ
 

The gradient of function f, is the vector field: 

𝑔𝑟𝑎𝑑 𝑓 = ∆. 𝑓 =  𝑖 + 𝑗 + 𝑘, this can be a dot product with a vector u to give the 

directional derivative in the direction of u: 𝑔𝑟𝑎𝑑𝑓. 𝑢 = 𝑢[𝑓]. 

The Laplacian of a function f is defined to be 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓) = 𝛻 · (𝛻𝑓) = 𝛻 · 𝛻𝑓 = 𝛻 𝑓, 
which is the divergence of the gradient that is the trace (tr) of the function’s Hessian, H(f).  
tr(H(f)) is the sum of the eigenvalues of the Hessian and is invariant of change of basis and a 
measure of the function curvature. More on this will be discussed in chapter five. 

The flat ♭and the sharp ♯operators are called musical isomorphisms because the symbols 
are taken from musical note notations. The flat♭in musical notes means “lower the pitch”, 
and sharp ♯ means “raise the pitch”. Similarly, the ♭isomorphism means “lower the 
indices” by going from the tangent space 𝑇𝑝𝑀 to the cotangent space 𝑇𝑝∗𝑀, such that a 

vector v is mapped as in 𝑣♭: 𝑣 → 𝑣 𝑑𝑥 . The ♯isomorphism means “raise the indices” 

by going from the cotangent space 𝑇𝑝∗𝑀 to the tangent space 𝑇𝑝𝑀, such that a differential 

form 𝛼  is mapped as in  𝛼♯: 𝛼 𝑑𝑥 → 𝛼 . 

the sharp and flat operators 

Given a vector field 𝔽 =  𝑃 , 𝑄 , 𝑅 , we will define a Hodge star mapping (∗◦♭) as 

first flattening the vector field to get a one-form and then Hodge staring that one-form to 

get a two form: (∗◦ ♭)𝔽 =∗ 𝔽♭ =∗ 𝑃 , 𝑄 , 𝑅
♭

=∗ (𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧) =

𝑃𝑑𝑦 ⋀ 𝑑𝑧 +  𝑄 𝑑𝑧 ⋀ 𝑑𝑥 +   𝑅 𝑑𝑥 ⋀ 𝑑𝑦. 
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3.4.2.2 Summary of Mappings & Generalised Stokes Theorem: 

In chapter 9 in (Fortney, 2018), relationships between differential calculus and vector 
calculus are summarised in this diagram in Figure 21  for ℝ . The mappings between each 
space are shown in the arrows. It is obvious that the identity (id) mapping is used between 
continuous function and the zero form on the same Manifold because they describe the 
same thing. The grad mapping applies the gradients of a continuous function to provide the 
tangent bundle. The differential operator moves the one-form differentials to their two-
form equivalent, while the flat operator ♭ move the tangent bundle to the two-form 
equivalent.    

  

Figure 21: Illustration of relationships between differential calculus and vector calculus 

 The “diagram commutes” from C(ℝ ) to  Λ (ℝ ) through two paths: 𝐶(ℝ )
( )

⎯⎯⎯ 𝑇ℝ
  ♭  

Λ (ℝ ) and C(ℝ^3) 
         
⎯⎯⎯   Λ (ℝ ) 

         
⎯⎯ Λ (ℝ ). In other words, given a 

continuous function 𝑓, we have (𝑔𝑟𝑎𝑑 𝑓 )♭ = 𝑑 𝑖𝑑(𝑓) = 𝑑𝑓. The left-hand side says that 
flattening the gradient of the continuous function is equivalent to the exterior derivative of 
the function. 

∆𝑓 =  
𝜕𝑓

𝜕𝑥
𝑖 +

𝜕𝑓

𝜕𝑦
𝑗 +

𝜕𝑓

𝜕𝑧
𝑘 =  

𝜕𝑓

𝜕𝑥

𝜕

𝜕𝑥
+

𝜕𝑓

𝜕𝑦

𝜕

𝜕𝑦
+

𝜕𝑓

𝜕𝑧

𝜕

𝜕𝑧
 

(∆𝑓)♭ =   
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 

𝑑𝑓 =   
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 = (∆𝑓)♭ 

Another commuting diagram shown in Figure 22 shows two paths that illustrate that given a 
vector Field 𝔽 ∈ 𝑇ℝ , the differential of flattened 𝔽 is equivalent to Hodge star of the 
flattened curl of 𝔽: 𝑑(𝔽^♭ ) =∗ ((𝑐𝑢𝑟𝑙 𝔽)♭) = (∗◦♭)(𝑐𝑢𝑟𝑙 𝔽). You can work out the 

Space of continuous 
functions on the 

manifold (ℝ ) 

Tangent Bundle (all 

vector fields) of (ℝ ) 𝐶(ℝ ) grad 𝑇ℝ  

♭ 

Λ (ℝ ) d Λ (ℝ ) 

id 

The zero-forms on 

(ℝ ) 
The one-forms on (ℝ ) 
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mapping operators on the arrows to derive this identity or check the detailed derivation 
steps in (Fortney, 2018). 

 

 

Figure 22: Another commuting diagram 

Another commuting diagram shown in Figure 23 shows two paths that illustrate that given a 
vector Field 𝔽 ∈ 𝑇ℝ , the Hodge star of divergence of 𝔽  is equivalent to the differential of 
the Hodge star of the flattened 𝔽: ∗ (𝑑𝑖𝑣 𝔽) = 𝑑 (∗◦ ♭)𝔽 = 𝑑 ∗ 𝔽♭  . You can work out 
the mapping operators on the arrows to derive this identity or check the detailed derivation 
steps in (Fortney, 2018). 

 

Figure 23: Another commuting diagram 

Tangent Bundle (all 

vector fields)  of (ℝ ) 
Tangent Bundle (all 

vector fields) of (ℝ ) 

The on-forms on 

(ℝ ) 
The two-forms on (ℝ ) 

𝑇ℝ  

 

curl 𝑇ℝ  

Λ (ℝ ) d Λ (ℝ ) 

♭ ∗◦♭ 

Tangent Bundle (all 

vector fields) of (ℝ ) 
Space of continuous 
functions on the 

manifold (ℝ ) 

The two-forms on 

(ℝ ) 
The three-forms on (ℝ ) 

𝑇ℝ  

* 

div 𝐶(ℝ ) 

Λ (ℝ ) d Λ (ℝ ) 

 ∗◦♭ 
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Figure 24: Connecting the three commuting diagrams 

Figure 24 connects the three commuting diagrams together, illustrating that the three 
vector calculus operators: the gradient, the curl and the divergence on top, are all different 
forms of exterior differentiations on the bottom of the diagram. The vector calculus cannot 
generalise to ℝ , while the differential calculus does.  

Poncaré lemma is a powerful tool for the study of manifolds. It states that every closed form 
on ℝ  is exact. A differential form α is closed if dα = 0. A differential k-form α is exact if 
there is another k-1-form differential form β such that α = dβ. 

The following identities from vector calculus can be written in terms of the exterior 
derivative as follows from the Poncaré lemma: 𝛻 × (𝛻𝑓) = 0 ↔ 𝑑(𝑑𝑓) = 0 and 𝛻 × (𝛻𝐹) =

0 ↔ 𝑑(𝑑𝛼) = 0. 

The fundamental theorem of line integrals, given a curve C, given by 𝑐(𝑠)  =
(𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) with endpoints 𝑐(𝑎)  = (𝑥(𝑎), 𝑦(𝑎), 𝑧(𝑎)), and 𝑐(𝑏)  =
(𝑥(𝑏), 𝑦(𝑏), 𝑧(𝑏)), where a, b ∈ ℝ and a ≤ b, then the fundamental theorem of line integrals 
is given by∫(𝑔𝑟𝑎𝑑 𝑓). 𝑑𝑠 =  𝑓 𝑐(𝑏) − 𝑓(𝑐(𝑎)), 𝑔𝑟𝑎𝑑 𝑓 produces the vector field F, and 
flattening it is equal to the differential of it as (𝑔𝑟𝑎𝑑 𝑓)♭ = 𝑑𝑓. We can also write the 
boundary of curve C as 𝜕𝐶 = {𝑐(𝑏) − 𝑐(𝑎)}. Combining these, we can write the theorem of 

line integral as: ∫ 𝑑𝑓 = ∫ 𝑓. 
 
Also, since 𝑓 is a zero-form, which we could denote as α, and C is a one-dimensional 

manifold M we could rewrite the fundamental theorem of line integrals as: ∫ 𝑑𝛼 = ∫ 𝛼. 
 

The vector calculus version of Stokes’ theorem states that: ∫ 𝑐𝑢𝑟𝑙 𝐹. 𝑛𝑑𝑆 = ∫ 𝐹. �́�(𝑠)𝑑𝑠. 

Similar to the line integral, the right-hand of Stokes’ theorem can be rewritten in terms of 

∫ 𝐹♭And similar derivation of the left-hand side, and by replacing the vector field F by the 

vector field curl F, to reach: ∫ 𝑐𝑢𝑟𝑙 𝐹. 𝑑𝑆 = ∫ ∗ ((𝑐𝑢𝑟𝑙 𝐹)♭) = ∫ 𝑑(𝐹♭). 

𝐶(ℝ ) grad 𝑇ℝ  

♭ 

Λ (ℝ ) d Λ (ℝ ) 

id 

d d Λ (ℝ ) Λ (ℝ ) 

curl div 𝑇ℝ  𝐶(ℝ ) 

 ∗ ∗◦♭ 
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Since 𝐹♭ is a one-form α, and S is a two-dimensional manifold M, which means we have 

arrived again at the Stokes’ theorem as above:  ∫ 𝑑𝛼 = ∫ 𝛼. 

The vector calculus version of the divergence theorem states that: ∫ 𝑑𝑖𝑣 𝐹 𝑑𝑉 =

∫ 𝐹. 𝑑𝑆. 

Again, the integrand on the left-hand side is equivalent to ∗ (𝑑𝑖𝑣 𝑭), which can be rewritten 
as 𝑑 (∗◦ ♭)𝐹 , and the right-hand side is equivalent to the right-hand side as follows: 

∫ 𝑑( ∗◦ ♭)𝐹)  = ∫ ∗ (𝐹♭). 
 
Writing the three-dimensional manifold V as M and the three two-form (∗◦ ♭)𝐹 as α, we 

have the divergence theorem as the generalised Stokes Theorem above: ∫ 𝑑𝛼 = ∫ 𝛼. 
 

 This means that the line integrals, Stokes theorem, and the divergence theorem are 
all special cases of what is called the generalized Stokes theorem. At this stage, 
calculus on manifolds is introduced well enough, and the reader is ready to study 
differential geometry if required. Differential geometry is important for machine 
learning to achieve independence in the representation of the dataset. These are 
called the non-parametric models, such as kernels, Gaussian processes, Bayesian non-
parametric, and VC dimensions. Chapter five will explain further representation 
theory and its applications in machine learning. A more advanced representation 
invariance such as homotopy can be encodable in deep learning (Haarmann et al., 
2014) 

 

Python notebook ch3.ipynb show examples of calculus in differential geometry operations 
on manifolds using the Sympy (Python symbolic math) package. Other Python packages 
provide various functions from differential geometry, and geometric statistics, such as the 
following: 

 The Geomstats: https://geomstats.github.io/.  

 The Geometric Algebra: https://galgebra.readthedocs.io/.   
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3.4.3 Tensors on Manifolds/Tensor Transformation 
Rules 

Generally, Tensors are defined in Physics as functions which eat a certain number of vectors 
(known as the rank r of the tensor) and produce a number. These input vectors are Nd-
arrays indices, and the output number is the value stored in this index location. This is very 
much the definition of differential forms. The multilinearity in Tensors means that the 
tensor function is linear in each of its r arguments in terms of the values of the 
functions/components on the r basis vectors. For example, a rank-2 tensor eats two vectors, 
v and w, such that multilinearity means:  

T (v1 + cv2,w) = T (v1,w) + cT (v2,w)  

T (v,w1 + cw2) = T (v,w1) + cT (v,w2)  

For vector basis/coordinate for our vector space, say 𝑥, 𝑦, and 𝑣 =  𝑣 𝑥  + 𝑣 𝑦, 𝑤 =

 𝑤 𝑥  + 𝑤 𝑦, then 

𝑇(𝑣, 𝑤) = 𝑇 𝑣 𝑥  + 𝑣 𝑦, 𝑤 𝑥  + 𝑤 𝑦 = 𝑣 𝑇 𝑥, 𝑤 𝑥  + 𝑤 𝑦 +  𝑣 𝑇 𝑦, 𝑤 𝑥  + 𝑤 𝑦

= 𝑣 𝑤 𝑇(𝑥, 𝑥 ) + 𝑣 𝑤 𝑇(𝑥, 𝑦) +  𝑣 𝑤 𝑇(𝑦, 𝑥 ) +  𝑣 𝑤 𝑇(𝑦, 𝑦) 

Which reduces to coordinate projections on different combinations of the coordinates. The 
components (𝑣 𝑤 , 𝑣 𝑤 , … ) are the tensors evaluation on the coordinate system 
(𝑇(𝑥, 𝑥 ), 𝑇(𝑥, 𝑦), …) or denoted (𝑇 , , 𝑇 , , …). This derives the tensor transformation laws 
to the new coordinate system, as reevaluating the new components on the basis of the new 
coordinate 𝑥′, 𝑦′, using mapping A. Then deriving the new components is performed as  
𝑥 = 𝐴 , 𝑥 + 𝐴 , 𝑦,   𝑦 = 𝐴 , 𝑥 + 𝐴 , 𝑦. This is interpreted as not affecting the action 
of Tensor T, as it exists independently of its coordinate system, and its components can be 
reevaluated in terms of the new coordinate system as the matrix multiplication: 

𝑇(𝑣, 𝑤) = [𝑣 𝑣 ]
𝑇 , 𝑇 ,

𝑇 , 𝑇 ,

𝑤
𝑤  

For an example from Physics that has applications in computer graphics, robotics navigation 
control and others, the moment of Inertia tensor I is a quantity that determines the 
rotational force (torque) required to achieve the required angular acceleration, as explained 
in the second law of motion. It is a scalar for a rotation around an axis perpendicular to a 
plane (2D rotation), 𝐼 = 𝑚𝑟 = ∫(𝑟 )𝑑𝑚 , where m is the object mass, and r is the distance 
to the rotational axis. To freely rotate around three axes, creating a 3D rotation, the Intertia 
I becomes a symmetric 3x3 matrix (2nd rank tensor) that captures the fact that a torque 
around one axis can create acceleration on other axes, is derived as,  
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𝐼 =

⎣
⎢
⎢
⎢
⎢
⎡ (𝑟 + 𝑟 )𝑑𝑚 − (𝑟 + 𝑟 )𝑑𝑚 − (𝑟 + 𝑟 )𝑑𝑚

− (𝑟 + 𝑟 )𝑑𝑚 (𝑟 + 𝑟 )𝑑𝑚 − (𝑟 + 𝑟 )𝑑𝑚

− (𝑟 + 𝑟 )𝑑𝑚 − (𝑟 + 𝑟 )𝑑𝑚 (𝑟 + 𝑟 )𝑑𝑚
⎦
⎥
⎥
⎥
⎥
⎤

 

This matrix can be factored into a rotational matrix R (which is the Eigenvectors of I matrix) 
and diagonal matrix D (the eigenvalues of I matrix) , I=RDRT. Applying this tensor on two 
copies of an angular velocity vector w, produces the Kinetic Energy KE computed as 𝐾𝐸 =

𝐼(𝑤, 𝑤) = [𝑤 𝑤 𝑤 ]

𝐼 𝐼 𝐼

𝐼 𝐼 𝐼

𝐼 𝐼 𝐼

𝑤
𝑤
𝑤

 

The I Inertia tensor can also be used as a linear operator that can be applied on the angular 

velocity vector w to produce the angular Momentum 𝐿 = 𝐼𝑤 =

𝐼 𝐼 𝐼

𝐼 𝐼 𝐼

𝐼 𝐼 𝐼

𝑤
𝑤
𝑤

 

Tensors on a manifold are defined as multilinear mapping:  

𝑇: 𝑇∗𝑀 × … × 𝑇∗𝑀 × 𝑇𝑀 × … 𝑇𝑀 → ℝ 

                     
 

𝑇(𝛼 , … 𝛼 , 𝑣 , … , 𝑣 ) → ℝ 

This map T takes r one-forms and s vectors as input and produces a real number. This means 
this tensor of rank (r, s), i.e. r contravariant degrees and s covariant degrees. 

Rank-1 Tensors are either covariant tensors or covariant tensors. 

𝑇: 𝑇𝑀 → ℝ is a Rank (0, 1)-tensor, also called a rank-1 covariant tensor. It is a linear 
mapping of a vector to a real number, which is equivalent to the differential one-form 
explained previously. This means that 𝑇 ∈ 𝑇∗𝑀, and expressed in terms of its components 
𝑇 and basis vectors 𝑑𝑥  as 𝑇 = 𝑇 𝑑𝑥 + ⋯ + 𝑇 𝑑𝑥 = ∑ 𝑇 𝑑𝑥 = 𝑇 𝑑𝑥 . A change of 
basis/coordinate functions from (𝑥 , … , 𝑥 ) to (𝑢 , … , 𝑢 ) using n functions on the same 
Manifold as: 𝑢 (𝑥 , … , 𝑥 ) = 𝑢   for I from 1 to n. The new components in the new 
coordinates are 𝑇 = 𝑇 𝑑𝑢 + ⋯ + 𝑇 𝑑𝑢 . This transformation mapping is captured in the 
Jacobian, and the transformed components can be calculated as follows: 
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𝑇
⋮

𝑇
=

⎣
⎢
⎢
⎢
⎡
𝜕𝑥

𝜕𝑢
⋯

𝜕𝑥

𝜕𝑢
⋮ ⋱ ⋮

𝜕𝑥

𝜕𝑢
⋯

𝜕𝑥

𝜕𝑢 ⎦
⎥
⎥
⎥
⎤

𝑇
⋮

𝑇
 

Such that 𝑇 = 𝑇 . The tensor T itself does not change, but its coordinate basis and 

components change. 

𝑇: 𝑇∗𝑀 → ℝ is a Rank (1, 0)-tensor, also called a rank-1 contravariant tensor. It is a linear 
mapping of a one-form paired with a vector < 𝜶, 𝒗 > to a real number, which is equivalent 
to the vector field explained previously. It is expressed in terms of its components and basis 

 as: 𝑇 = 𝑇 + ⋯ + 𝑇 = ∑ 𝑇 = 𝑇 . Notice that hat the components of 
the previous covariant tensor were indicated with lower indices, and the components of this 
contravariant tensor are indicated by upper indices when using Einstein summation 

notation. Previously the i in  is regarded as a lower index of the whole term even though 
it is an upper index of the u because it is in the denominator, while the j is considered as an 
upper index of the term because it is in the numerator. 
To transform the basis of this contravariant tensor from  to , we need the mappings 
from the Jacobian matrix to compute the new components, such as: 

𝑇
⋮

𝑇

=

⎣
⎢
⎢
⎢
⎡
𝜕𝑢

𝜕𝑥
⋯

𝜕𝑢

𝜕𝑥
⋮ ⋱ ⋮

𝜕𝑢

𝜕𝑥
⋯

𝜕𝑢

𝜕𝑥 ⎦
⎥
⎥
⎥
⎤

𝑇
⋮

𝑇

 

Such that 𝑇 = 𝑇 . The basis elements of 𝑇∗𝑀 transform as follows: 

𝑑𝑢
⋮

𝑑𝑢

=

⋯

⋮ ⋱ ⋮

⋯

𝑑𝑥
⋮

𝑑𝑥

, such that 𝑑𝑢 = 𝑑𝑥  

For Rank-2 tensors, we have three possibilities: 
1. (0, 2)-Tensors (Rank-Two Covariant Tensor): 𝑇: 𝑇𝑀 × 𝑇𝑀 → ℝ, such that two-forms are 
a subset. It takes two vectors and produces a real number. 𝑇 ∈ 𝑇∗𝑀 × 𝑇∗𝑀 =

𝑠𝑝𝑎𝑛{𝑑𝑥 ⨂𝑑𝑥 |1 ≤ 𝑖, 𝑗, ≤ 𝑛}. If M is an ℝ Manifold, then 𝑇 =  𝑇 𝑑𝑥 × 𝑑𝑥 +

 𝑇 𝑑𝑥 × 𝑑𝑥 +  𝑇 𝑑𝑥 × 𝑑𝑥 +  𝑇 𝑑𝑥 × 𝑑𝑥 = ∑ ∑  𝑇 𝑑𝑥 ⨂𝑑𝑥 =

𝑇 𝑑𝑥 ⨂𝑑𝑥 . It is obvious how this generalises to ℝ Manifold. For a change of basis 
mapping from (𝑥 , … , 𝑥 ) to (𝑢 , … , 𝑢 ), given the appropriate Jacobian matrix, we have 
the 𝑇 = 𝑇 𝑑𝑢 ⨂𝑑𝑢 Such that the transformed components are calculated as 𝑇 =

 𝑇 . Two forms are a subset of these general Rank-2 covariant tensors because two 
forms have the special property that 𝑑𝑥  ∧  𝑑𝑥 (𝑣, 𝑤) =  −𝑑𝑥  ∧  𝑑𝑥 (𝑤, 𝑣), and this 
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generalises such that k-form is a skew-symmetric rank k covariant tensor ⋀ (𝑀) ⊂

𝑇∗𝑀 ⨂ … ⨂𝑇∗𝑀. If a Tensor has components with opposite sign when two indices are swapped, 
such as T(v1, . . . ,vi, . . . ,vj , . . . ,vk)= −T(v1, . . . ,vj , . . . ,vi, . . . ,vk) this property is satisfied, 
then these tensors are skew-symmetric or anti-symmetric. 
2. (2, 0)-Tensors (Rank-Two Contravariant Tensor):  𝑇: 𝑇∗𝑀 × 𝑇∗𝑀 → ℝ. It takes two one-

forms and produces a real number. 𝑇 ∈ 𝑇𝑀 × 𝑇𝑀 = 𝑠𝑝𝑎𝑛{ ⨂ |1 ≤ 𝑖, 𝑗, ≤ 𝑛} . Again, 

if M is an ℝ Manifold, then 𝑇 = 𝑇 ⨂ + 𝑇 ⨂ + 𝑇 ⨂ +

𝑇 ⨂ = ∑ ∑ 𝑇  ⨂ = 𝑇  ⨂ . It is obvious how this generalises 

to ℝ Manifold. For a change of basis mapping from (𝑥 , … , 𝑥 ) to (𝑢 , … , 𝑢 ), given the 

appropriate Jacobian matrix, we have the 𝑇 = 𝑇  ⨂ Such that the transformed 

components are calculated as 𝑇 = 𝑇 .  

3. (1, 1)-Tensors (Mixed-Rank Covariant-Contravariant Tensor): 𝑇: 𝑇∗𝑀 × 𝑇𝑀 → ℝ. It takes 
one vector and a one-form and produces a real number. 𝑇 ∈ 𝑇𝑀 × 𝑇∗𝑀 =

𝑠𝑝𝑎𝑛{ ⨂𝑑𝑥 |1 ≤ 𝑖, 𝑗, ≤ 𝑛}. Again, if M is an ℝ Manifold, then 𝑇 = 𝑇 ⨂𝑑𝑥 +

𝑇 ⨂𝑑𝑥 + 𝑇 ⨂𝑑𝑥 + 𝑇 ⨂𝑑𝑥 = ∑ ∑ 𝑇  ⨂𝑑𝑥 = 𝑇  ⨂𝑑𝑥 . It is 

obvious how this generalises to ℝ Manifold. For a change of basis mapping from 
(𝑥 , … , 𝑥 ) to (𝑢 , … , 𝑢 ), given the appropriate Jacobian matrix, we have the 𝑇 =

𝑇  ⨂𝑑𝑢 Such that the transformed components are calculated as 𝑇 = 𝑇 .  

Back to the general rank (r, s) tensors:  𝑇: 𝑇∗𝑀 × … × 𝑇∗𝑀 × 𝑇𝑀 × … 𝑇𝑀 → ℝ, which is an 
element of 𝑇 ∈ 𝑇𝑀⨂ … ⨂𝑇𝑀⨂𝑇∗𝑀⨂ … ⨂𝑇∗𝑀 =

𝑠𝑝𝑎𝑛{  ⨂ … ⨂ ⨂𝑑𝑥 ⨂ … ⨂𝑑𝑥 |1 ≤ 𝑖 , … , 𝑖 , 𝑗 , … , 𝑗  ≤ 𝑛}, and it is expressed in 
terms of its components and basis as then 𝑇 =

𝑇 ,…,
,…,

⨂ … ⨂ ⨂𝑑𝑥 ⨂ … ⨂𝑑𝑥 .Again, an invertible change of basis from 
(𝑥 , … , 𝑥 ) to (𝑢 , … , 𝑢 ), given the appropriate Jacobian matrix, we have the 𝑇 =

𝑇 ,…,
,…,

 ⨂ … ⨂ ⨂𝑑𝑢 ⨂ … ⨂𝑑𝑢 , such that the transformed components are 

calculated as 𝑇 ,…,
,…,

= … … 𝑇 ,…,
,…, . Given a mapping 𝜑 : M →M, the 

pullback of a rank (0, t)-tensor T at the point p is defined similarly to the pullback of 
differential forms as: (𝜑∗𝑇 ( )) (𝑣 , . . . , 𝑣  )  =  𝑇 ( )(𝜑 ∗ 𝑣 , . . . , 𝜑 ∗ 𝑣 ). For any 
tensors T and S, we have 𝜑∗(𝑇⨂𝑆) = 𝜑∗𝑇⨂𝜑∗𝑆, which means that pullbacks distribute 
over tensor products, 𝜑∗(𝑇 + 𝑆) = 𝜑∗𝑇 + 𝜑∗𝑆, which means that pullbacks distribute over 
addition, 𝜑∗(𝑇 ∧ 𝑆) = 𝜑∗𝑇 ∧ 𝜑∗𝑆, which means that pullbacks distribute over wedge 
products. 
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The Euclidean metric is the dot product, and earlier, the Minkowski metric on ℝ  was 
defined. Both are (2, 0) tensors. The following definitions are needed to define a metric 
tensor g: 

 Like smooth vector fields discussed previously, smooth tensors need to be infinitely 
differentiable in the arguments. 

 Symmetric tensor: given tensor g and two vector fields v and w, the tensor g is 
symmetric if 𝑔(𝑣, 𝑤)  =  𝑔(𝑤, 𝑣). 

 Non-degenerate tensor: Tensor g is called non-degenerate at point p, if 

𝑔 (𝑣 , 𝑤 )  =  0. g is a non-degenerate tensor if it is non-degenerate at every point 

p ∈ M. 

 A manifold with such a tensor g is called a pseudo-Riemannian manifold, and the 
tensor g is called the metric or sometimes the pseudo-Riemannian metric. If the 
metric g also has one additional property, that g(v,w) ≥ 0 for all vector fields v and w, 
then it is called a Riemannian metric, and the manifold is called a Riemannian 
manifold. 

A metric on the manifold M is a smooth, symmetric, non-degenerate, rank-two covariant 
tensor g, which we can write as a matrix. Metric tensors are generally denoted with a 
lowercase g. The metric tensor g gives an inner product on every vector space 𝑇𝑝𝑀 in the 
tangent bundle of M. The inner product of 𝑣 , 𝑤  ∈ 𝑇𝑝𝑀 is given by 𝑔(𝑣 , 𝑤 ). Most often, 
the inner product of two vectors is denoted with  <·, ·> where < 𝑣 , 𝑤 > ≡  𝑔(𝑣 , 𝑤 ). For 

basis vectors < , > ≡  𝑔 , = 𝑔 , which is a (1,1)-tensor. Being (1,1)-tensor 

enables defining  a map L from a given space to its dual, such as ℝ → (ℝ )∗. The tensor 
metric can be expressed as a matrix: 

𝑔(𝑣, 𝑤) = [𝑣 … 𝑣 ]

𝑔 … 𝑔
⋮ ⋱ ⋮

𝑔 … 𝑔

𝑤
⋮

𝑤

 

When 𝑔 = 𝛿  , which is the Kronecker delta, then g is the Euclidean metric, which is the 
Euclidean inner product, and matrix [𝑔  ] is none other than the identity matrix. 

The length/norm of a vector 𝑣  is calculated as: 𝑣 ≡ 𝑔(𝑣 , 𝑤 )  

Given two points p and q in the same coordinate patch of M that are connected by a curve 
𝛾: [𝑎, 𝑏] ⊂ ℝ → 𝑀 where 𝛾(𝑎) = 𝑝 and 𝛾(𝑏) = 𝑞. The curve 𝛾(𝑡) has tangent velocity 
vectors �̇�(𝑡) along the curve. To ensure the tangent velocity vectors actually exist at the 
endpoints, the curve needs to be extended a tiny amount 𝜖 to (𝑎 − 𝜖, 𝑏 + 𝜖) ⊂ ℝ. The 
length of the curve 𝜸 from p to q is defined to be 𝐿(𝛾) = ∫ |𝑔(�̇�(𝑡), �̇�(𝑡))|  𝑑𝑡.  
 



CHAPTER 3 

61 

The distance between points p and q is defined in terms of the minimum piecewise 
continuous curve connecting them as 𝑑(𝑝, 𝑞) = inf 𝐿(𝛾), where inf is the infimum operator 

for the lower limit of lengths of curves in this instance. 
If the Manifold is defined with a metric on it, it should be used. If it is not defined with a 
metric, then distances are not a valid measure.  

Given a Riemannian Manifold M and a tensor metric g defined on the tangent space TpM at 
each point p, this tensor g is the Riemannian metric for this Manifold.  

Back to the example from Physics, given an Inertia matrix, a rigid body with origin at O, 
time-dependent body fixed axis 𝐾 = { 𝑥(𝑡), 𝑦(𝑡), �̂�(𝑡)} in ℝ , an ith particle in the rigid body 
has mass mi and position vector ri with [𝑟 ]  =  (𝑥 , 𝑦 , 𝑧 ) relative to O, and let 𝑟  ≡

 𝑔(𝑟 , 𝑟 ), then the (2,0)-moment of Inertia tensor is 𝐼( , ) = ∑ 𝑚 (𝑟  𝑔 − 𝐿(𝑟 ) ⊗ 𝐿(𝑟 )). 

The (1,1)-moment of Inertia tensor is 𝐼( , ) = ∑ 𝑚 𝑟  𝐼 − 𝐿(𝑟 ) ⊗ 𝑟 . Some common 

components are defined as 𝐼 = ∑ 𝑚 𝑦 + 𝑧 , and 𝐼 = − ∑ 𝑚 𝑥 𝑦  as seen from the 
3x3 Inertia matrix earlier in this section. This matrix showed the entanglement caused by 
having a spin around one axis affecting the spin around the others.  A 2-particle system 
would create a tensor of order 6 to maintain the ℝ  position vector of each particle. 
Rotation is usually in the ℂ  space. Combining rotation of 2 particle system would create a 
nine-dimensional Hilbert space of Complex space  ℂ ⊗ ℂ , with the required basis. For 
complete derivation, check the book (Jeevanjee, 2011). More on Hilbert spaces will be 
presented in chapter five. 

The Lie derivative applies to all forms of tensors, while the global (coordinate-free) exterior 
differentiation applies to differential forms only as subsets of tensors.  

To introduce the Lie derivative, we need to revisit integral curves. Integral curves 𝛾 are 
curves on the manifold M that are considered as a family of mappings from each time step 
to the next in the same manifold M to itself. We begin by fixing some time t0 as our zero 
time at point p. Then, for each time t, we have a mapping 𝛾(𝑡)  that sends 𝛾(𝑡 ) to 𝛾(𝑡 +

𝑡), such that 𝑝 = 𝛾(𝑡 ) → 𝛾 (𝑝) =  𝛾(𝑡 + 𝑡). It can also be between Manifolds or to 
another copy of M: 𝑀 → 𝑀, which would be a push-forward defined as: 𝑇 𝛾 = 𝛾 ∗: 𝑇 𝑀 →

𝑇 ( )𝑀. A pull-back would be 𝑇∗𝛾 = 𝛾 ∗: 𝑇 ( )
∗ 𝑀 →  𝑇∗𝑀. Given that at some point p, the 

mapping takes us to point q, 𝛾 (𝑝) = 𝑞, we can define the inverse mapping 𝛾 (𝑞) = 𝑝, 
which is sometimes denoted 𝛾 (𝑞) = 𝑝, which makes the push forwards defined as: 
𝑇 𝛾 = 𝑇 𝛾 = 𝛾 ∗: 𝑇 𝑀 → 𝑇 ( )𝑀 
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Lie derivative of a vector field w in the direction of v at the point p:  (ℒ 𝑤) =

lim
→

 ∙ ( )
= ((𝛾 )∗ ∙  𝑤 ( )) . 

Lie derivatives of one-forms 𝛼, in the direction of v at point p :  (ℒ 𝛼) =

lim
→

∗  ∙ ( )
= ((𝛾 )∗ ∙  𝛼 ( )) . 

Lie derivative of functions as zero-forms   (ℒ 𝑓) = lim
→

∗  ∙ ( )
=

( )
=

𝑣 [𝑓]. 

Lie derivative of tensors: Given the rank (r, s) tensor T defined above and that the tensor is 
in a single coordinate chart on a manifold, it is possible to patch coordinate charts together. 
The tensor pull back by 𝛾  is defined as: (𝛾∗𝑇) (𝛼 , … , 𝛼 , 𝑣 , … , 𝑣 ) =

𝑇
( )

(𝛾∗ 𝛼 , … , 𝛾∗ 𝛼 , 𝛾∗ 𝑣 , … , 𝛾∗ 𝑣 ). The Lie derivative of a tensor is then defined as: 

(ℒ 𝑇) = lim
→

∗
( )

= (𝛾∗𝑇
( )

) . This leads to several identities with other 

operators that facilitate the computation and provide valuable properties. For more details, 
refer to Appendix A in (Fortney, 2018). 

Summary 

This chapter should have enabled the reader to see that tensors are elementary 
mathematical objects that transform in a coordinate-free approach. For example, tensor 
fields in a vector space or on a curved manifold undergo linear transformations under 
changes in the space coordinates. The Jacobian matrix of the mapping functions is used to 
transform the coefficients in one coordinate system/basis to another. Differentiation is 
defined for the different object types. Going through this chapter while executing the code 
in the ch3.ipynb, editing it to try new examples, and checking the help of the functions for 
different options of the parameters, should make the material easier to visualise and 
manipulate for various applications. 

3.5 Multilinear Subspace Learning (MSL) 

As we discussed in chapter two, finding a lower-dimensional structure in a given dataset 
reduces computational requirements turning an intractable solution into a tractable one, 
reducing noise, and explaining the data dynamics or interactions. In the higher dimensions, 
the dimensionality curse is the main obstacle and the need for finding an approximate 
structure that preserves the non-linear dynamics is even more important. Figure 25 
illustrates the computational requirements of the covariance matrix of a vectorised 3-
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dimensional video dataset, with the first two dimensions being spatial rows and columns of 
128 x 88 dimensionality and a time third dimension of 20 frames. The LSL vectorisation in (a) 
results in a large covariance matrix of 189 GB memory fingerprint and the resulting 
processing time. The MSL tensor-based analysis of three smaller covariance matrices results 
in 95.8KB of memory fingerprint and reduced processing time (Lu, Plataniotis and 
Venetsanopoulos, 2011).  

 

Figure 25: Vector-based analysis in (a) versus tensor-based analysis (b) of a 3D video object covariance matrix 
(Lu, Plataniotis and Venetsanopoulos, 2011).  

As shown in Figure 25, linear subspace learning (LSL) vectorisation is performed by the 
product of the number of dimensions in each mode. The multilinear subspace learning 
(MLS) tensor-based analysis is performed by the sum of dimensions in each mode. This 
reduces the degree of freedom and creates a sparse/compact grid-like structure that 
preserves the multi-way interactions across the different modes. Consequently, this reduces 
or solves the small sample size (SSS) problem containing many features, which makes LSL ill-
posed (Lu, Plataniotis and Venetsanopoulos, 2014). 

3.5.1 Vector-Vector Projection vs Tensor Projection 
Performance 

In chapter one, matrices were defined as performing linear transformations on vectors. 
These linear transformations are considered projections because it maps a vector 𝒗 ∈ ℝ𝑰𝟏 
to another vector 𝒖 ∈ ℝ𝑰𝟐  that could be in a higher or lower-dimensional space using a 
projection Matrix M ∈ ℝ × such that  𝑢 = 𝑀 𝑣 = 𝑣 × 𝑀   (Lu, Plataniotis and 
Venetsanopoulos, 2011). 
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Tensor Projections are based on the Tucker decomposition (explained below) and is a 
generalisation of the vector projections in the higher dimensions. It takes as input an N-
dimensional (N-way) tensor object 𝜒𝜖 ℝ “× “ “×” …”×”  and project it to another dimension 
such as 𝜒𝜖 ℝ “× “ “×” …”×” , where Pj ≤ Ij for j = 1, ..., N, using N projection matrices. For 
example, a matrix (2-way tensor) 𝜒𝜖 ℝ “× “  is projected to a lower dimension 
𝜒𝜖 ℝ “× “  using two projection matrices 𝑀 ∈ ℝ × , 𝑀 ∈ ℝ × : 𝑈 =

𝜒 × 𝑀 × 𝑀 = 𝑀 𝑉𝑀 . In the higher order, this is generalised to 𝑀 ∈ ℝ ×  𝑓𝑜𝑟 𝑗 =

1, … 𝑁, 𝑈 = 𝜒 × 𝑀 × 𝑀 × … × 𝑀 . Figure 26 shows example 𝜒𝜖 ℝ ”× “ ”×”  
vectorised in (a) and using a vector to vector projection to lower dimension, then as a tensor 
to tensor projection in (b), then as a tensor to vector projection in (c), where EMP stands for 
elementary multilinear projection.  

The tensor-to-vector projections are based on the CANDECOMP/PARAFAC model (explained 
below). It is a special case of the tensor to tensor projections in which the lower dimension 
shape vector is Pj = 1 for j=1…N. For example, a 2-way tensor (matrix) can be projected to a 
vector of scalars using two projection matrices (or unit vectors since the number of the 
columns is 1) as 𝑢 = 𝜒 × 𝑚 × 𝑚 = 𝑚 𝜒𝑚 . Unit vectors mean their norm 𝑚  is 

equal to 1. Figure 27 shows a 𝜒𝜖 ℝ ”× “ ”×”  projection to vector using EMP. In the higher 
dimension, it is considered the inner product between 𝜒 with the result of the outer product 
of the projection vectors: 𝑈 = 𝜒, 𝑚 ∘ 𝑚 ∘ … ∘ 𝑚 =  ⟨𝜒, 𝑀⟩ 𝑓𝑜𝑟 𝑀 =  𝑚 ∘ 𝑚 ∘

… ∘ 𝑚 .  

 

Figure 26: Illustration of (a) vector-to-vector projection, (b) tensor-to-tensor projection, (c) tensor-to-vector 
projection (Lu, Plataniotis and Venetsanopoulos, 2011). 

(a)    (b)    (c) 
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Figure 27: Illustration of an elementary multilinear projection (Lu, Plataniotis and Venetsanopoulos, 2011). 

From the examples above, you can see that the vector to vector projections (VVP) vectorises 
a tensor to create a one-dimensional vector of elements 𝑃 = ∏ 𝑃  different 
elements/scalars (all elements of the tensor causing the dimensionality curse). That is then 
linearly mapped into the output vector using one of the linear subspace learning methods in 
chapter two to reduce the dimensionality by giving a weight (parameter) to estimate to 
every element. However, in the tensor-to-tensor projection (TTP) (and the special case of 
tensor-to-vector projections - TVP), each element in 𝜒 is projected by each column in the 
projection matrices 𝑀 , such that there are shared columns in the projection matrices by 

estimating 𝑃 =  ∑ 𝐼  parameters. This reduces the model's number of parameters, hence 
reducing its complexity. Table 0-1 compares the different projection methods on different 
input and output sizes and shows that tensor-to-tensor projections  (TTP) require the fewest 
number of parameters to estimate than both tensor-to-vector (TVP) and the high 
dimensional vector-to-vector projections (VVP). In TTP, a tensor object A is projected to a 
smaller tensor of size P1 × P2 × P3. This multilinear projection can be carried out through 
P_N mode-n multiplications Table 2 summarises the comparison of LSL and VVP methods 
and MSL using TVP and TTP methods on various criteria such as representation, accuracy 
and complexity. 

Table 0-1: Number of parameters to be estimated by three multilinear projections for N=2D, IN = 10, Pn = 3. 
(Lu, Plataniotis and Venetsanopoulos, 2011) 

Input Output VVP TVP TTP 
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𝐼  
P 

𝑃 𝐼  𝑃 𝐼  𝑃 𝑃  × 𝐼  

10 × 10 4 400 80 40 (Pn = 2) 

100 × 100 4 40,000 800 400 (Pn = 2) 

100 × 100 × 100 8 8,000,000 2400 600 (Pn = 2) 

100 
16 1,600,000,000 6400 800 (Pn = 2) 

 

Table 2: Linear versus multilinear subspace learning. 

Comparison Linear subspace learning Multilinear subspace learning 

RepresentationReshape into vectors Natural tensorial representation

Structure Break natural structure Preserve natural structure 

Parameter Estimate a large number of parametersEstimate fewer parameters 

SSS problem More severe SSS problem Less SSS problem 

Massive data Hardly applicable to massive data Able to handle massive data 

Optimization  

(in most cases) 

Closed-form solution Suboptimal, iterative solution 

 

Python notebook ch3.ipynb shows examples of the different projection methods 
discussed in this section and the parameters’ numbers for each. 

3.5.2 Scatter Matrices in the higher dimensions 

As we have seen in chapter two, finding a lower-dimensional structure required pair-wise 
covariance or scatter matrices. A tensor object 𝜒 ∈ ℝ × × … ×  is a dataset when it 
contains M samples, each described with N features with shape vector (I1, I2, … IN). The 
scatter matrix in the higher-dimensional tensor objects suitable for TTP is defined per mode 
as follows: 
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𝑆
( )

= ∑ 𝜒 ( ) − �̅�( ) 𝜒 ( ) − �̅�( ) , where �̅� =  ∑ 𝜒 , and 𝜒 ( ), �̅�( ) are 

the mode-n unfolding of 𝜒  and �̅�, respectively. For a prelabeled dataset, the between-class 

scatter is defined as: 𝑆( )
= ∑ 𝑀 �̅� ( ) − �̅�( ) �̅� ( ) − �̅�( ) , where C is the number 

of classes, Mc is the number of samples for class c, cm is the class label for the mth sample, 
𝜒 ( )  is the n-mode of  𝜒  samples in class c, �̅�( )is the n-mode of �̅� the tensor means, and 

the class mean tensor is defined as:  𝜒𝑐 =  
1

𝑀𝑐

∑ 𝜒𝑚.𝑀
𝑚=1,c𝑚=c  The within-class scatter matrix 

is defined as: 𝑆( )
= ∑ 𝜒 ( ) − �̅� ( ) 𝜒 ( ) − �̅� ( ) , where �̅� ( ) is the 

mode-n unfolding of �̅� which is the mean of the class of sample m. 

For TVP, scalar-based scatters are defined as degenerate equations similar to those above, 
using vectors instead of matrices and scalars instead of vectors. 
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