
Chapter 4: Tensors Structures and 
Modelling Applications 

Chapter one, accompanying source code, has introduced why tensors are essential for high 
dimensional dataset representations enabling multi-way analysis that is not possible when 
high dimensional data are vectorised or metricised. Representing tensors in full 
dimensionality suffers from the dimensionality curse. This chapter will start with tensor 
decomposition methods that factorise the high-dimensional tensor space into the most 
dominating components in each dimension, providing low-rank compression. These 
components can be represented in memory using sparse factor matrices and low-order core 
tensors, called factors or blocks. The most common tensor decomposition algorithms that 
will be covered are CP and Tucker.  
Then, the second section will introduce graphical tensor notations as graph data structures. 
This section explains how a network of tensors can be contracted into one tensor using 
graphical notation and Einestien indices. Then the third section will introduce tensor 
networks as decomposition algorithms that represent large-scale tensors hierarchically 
using lower-rank core tensors. We can work with networks of tensors, such as each tensor 
representing a multi-way dataset; particular indices/features in a tensor connect to other 
indices/features in another multi-way dataset tensor representation as summation indices 
enabling contraction or left as free indices in the final tensor shape. The final tensor shape is 
the dataset a machine learning or deep learning algorithm should use, identifying some 
indices/features as predictors and others as target/outcome variables. We can also work 
with tensor networks that are a factorisation of a given large tensor. The following section 
then introduces two tensor Network decomposition approaches. Tensor Train (TT) 
decomposition reduces the complexity of the tensor decomposition algorithms presented in 
chapter three when working on large tensors. TT uses permutations of tensor dimensions 
doing sequential multilinear products over latent tensor cores. Tensor Ring (TR) 
decomposition optimises the operations of TT by doing circular multilinear products over a 
sequence of low-dimensional tensor cores. TT and TR reduce a large-scale optimisation 
problem to tractable more minor problems (lower-order smaller core tensors of order at 
most 3), similar to how ALS reduced a non-convex problem to convex subproblems. TT and 
TR methods build on Hierarchical Tucker methods in which lower-order rank core tensors 
form a tree representing the large tensor.  
 
The chapter will then conclude with applications. The first sectapplies tensor completion by 
using tensor decomposition methods, and the other introduces tensor regression methods. 
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Then, a final section will introduce artificial neural networks (ANN) and how they can benefit 
from tensor higher-order representations of data and the tensor decomposition algorithms. 
 

4.1 Tensor Decomposition Methods 

The previous section explains the projection to a lower dimension as the Multilinear 
subspace learning method. In this section, learning the projection matrices that effectively 
capture the dataset structure and optimising the representation of the approximate learned 
structure to the high dimensional one is explained. Low-rank matrix factorization presented 
in chapter two does not enable the recovery of the underlying components. In contrast, 
some tensor decompositions, such as CP decomposition, provide an essentially unique 
decomposition suitable for many problems, such as Blind Source Separation (BSS) and 
others. The general framework requires the following steps: 

1. The learning paradigm to follow: supervised, unsupervised, semi-supervised, or 
active learning. 

2. The multilinear projection to employ: VVP, TVP, or TTP. 
3. The criterion to be optimized: such as maximising scatter measures as practised 

in LSL. 
4. The order of tensor representation: 2-D, 3-D, or 4-D are the most natural 

choices, but some datasets or application requirements require higher orders.  
5. The additional model/constraints to be imposed: PCA maximises the variance 

captured as the optimisation criteria while keeping orthogonality between PCs 
as the constraints (uncorrelated). ICA assumes independent sources mixed in 
the received dataset. Other constraints, optimisation objectives, and 
assumptions can be extended to each mode in the higher dimension or even in 
the interactions between modes. 

4.1.1 CANDECOMP/PARAFAC (CP) 
As explained in chapter two, the SVD of a matrix is computed by 𝑋 = 𝑈S𝑉 = σ u v +

σ u v + ⋯ + σ u v . This can be expressed as the summation of outer products of the 
vectors of the most dominating columns in U, and most dominating rows in V, in the order 
of the singular values 𝜎 from the highest σ to the lowest given rank σ  that is diagonalized 
in S as illustrated in Figure 1. 
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Figure 1: 2-way SVD generalised to enable the higher order SVD 

This enables the approximate reconstruction of matrix 𝜒 as �̂� from its dominant 
components: 

�̂�   = σ u v  

This means matrix �̂�  is a linear combination of the rank one vectors of the two dimensions 
of the given matrix 𝜒. The higher-order representation of this process is illustrated in Figure 
2 for 3 dimensions. The most dominating components in each dimension are represented as 
rank-one vectors along with each mode, the multiplication with the singular values is 
absorbed in the factor vectors, and the summation of their outer products forms the 
reconstruction.  
Hitchcock, in 1927 proposed the idea of the polyadic form of a tensor, i.e., expressing a 
tensor as the sum of a finite number of rank-one tensors as the Canonical decomposition 
(CANDECOMP). This was later redefined in the psychometrics community as parallel factors 
(PARAFAC), which is an approximation technique suitable for matrices that have a collection 
of the same number of columns and different rows. PARAFAC relaxes some of the CP 
constraints and fits the covariance matrices’ cross-products to the original data. Both have 
the acronym CP. CP factorises a tensor 𝜒 using the outer product ∘ of rank-1 vectors across 
each mode, for R as the tensor rank. For a tensor of order 3 this is defined as follows:  
𝜒𝜖 ℝ × × =  ∑ 𝑎 ∘ 𝑏  ∘ 𝑐  ≈  ∑ 𝑎 𝑏 𝑐  for all ar 𝜖 ℝ , br 𝜖 ℝ , and cr 𝜖 ℝ . 

This is defined as the Khatri-Rao product ⊙ for the matrix-form on each mode as follows: 
 𝜒( ) ≈ 𝐴(𝐶 ⊙ 𝐵) , 𝜒( ) ≈ 𝐵(𝐶 ⊙ 𝐴) ,  𝜒( ) ≈ 𝐶(𝐵 ⊙ 𝐴) . This is concisely expressed 
as 𝜒 ≈  𝜒 = ⟦𝜆; 𝐴,  𝐵,  𝐶⟧ = ∑ 𝜆  𝑎 ∘ 𝑏  ∘ 𝑐 . This three-way model is expressed as the 
frontal slices of 𝜒. It is often useful to assume that the columns of A, B, and C are normalized 
to length one with the weights absorbed into the vector  𝜆 𝜖 ℝ  that can be added to the 
equation as below.  
The N dimensions generalisation is defined as 𝜒𝜖 ℝ “× “ “×” …”×”  ≈

𝜆; 𝐴( ),  𝐴( ), … . , 𝐴( )  = ∑ 𝜆  𝑎
( )

∘ 𝑎
( )

∘ …  𝑎
( )

= Λ × 𝐴( ) × 𝐴( ) … × 𝐴( )., 
where Λ 𝜖 ℝ ”× “ ”×” …”×”  is a diagonal core tensor such that 𝜆 =  Λ , ,…. . 
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Figure 2: The CANDECOMP/PARAFAC decomposition of a third-order tensor. 

Just like the matrix rank is defined as the fewest number of linearly independent columns, 
the tensor rank should be defined the same, but this will be NP-hard to identify the rank 
computationally. Iteratively, the tensor rank is computed as the fewest number of rank-one 
tensors that generate the approximated tensor as their sum with the smallest error 
‖𝜒 − 𝜒 ‖ , i.e. the fewest number of components in the exact CP decomposition with R = 
rank(𝜒). Finding the tensor rank is an NP-hard problem, and methods like Alternating Least 
Squares (ALS) are used. The method is based on fixing A and B to solve C, then fixing A & C 
to solve B, then fixing B and C to solve A, and repeating until convergence, which is defined 
as the case when the error is not significantly decreasing. ALS reduces a non-convex 
optimisation problem to convex subproblems.  
Repeat Until Convergence: 

min 𝑥 − 𝑎 𝑏 𝑐 = min 𝑋( ) − 𝐴(𝐶 ⊙ 𝐵) , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(𝐶 ⊙ 𝐵)

= 𝑐 ⊗ 𝑏   

 

min 𝑥 − 𝑎 𝑏 𝑐 = min 𝑋( ) − 𝐵(𝐶 ⊙ 𝐴)  , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(𝐶 ⊙ 𝐴)

= 𝑐 ⊗ 𝑎  

 

min 𝑥 − 𝑎 𝑏 𝑐 = min 𝑋( ) − 𝐶(𝐵 ⊙ 𝐴)  , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(𝐵 ⊙ 𝐴)

= 𝑏 ⊗ 𝑎  

A sample algorithm is defined as follows for a 4th-Order Tensor (Ji et al., 2019), where 𝜒 is 
mode x vectorisation of tensor Y: 
Input: 
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The 4th-order tensor 𝜒𝜖 ℝ ”× “ ”×” ”×”  

Output: 

Factor matrices A,B,C,D and the core tensor Λ 

1. Initialize A,B,C,D and CP rank R, where R ≤ min{IJ , JK, IK}; 

2. while the iteration threshold does not reach or the algorithm has not 
converged do 

a. 𝐴 = 𝜒 [(𝐷 ⊙ 𝐶 ⊙ 𝐵) ]; 

b. Normalize column vectors of A to unit vector; 

c. 𝐵 = 𝜒 [(𝐷 ⊙ 𝐶 ⊙ 𝐴) ]; 

d. Normalize column vectors of B to unit vector; 

e. 𝐶 = 𝜒 [(𝐷 ⊙ 𝐵 ⊙ 𝐴) ]; 

f. Normalize column vectors of C to unit vector; 

g. 𝐷 = 𝜒 [(𝐶 ⊙ 𝐵 ⊙ 𝐴) ]; 

h. Normalize column vectors of D to unit vector; 

i. Save the value of the norms of the R column vectors in the factor 
matrix C to the core tensor Λ; 

3. end while 

4. return Factor matrices A, B, C, D and the core tensor Λ 

 
And can be generalised to N order as: 
Input: N-order tensor 𝜒𝜖 ℝ “× “ “×” …”×” , tensor rank R 

Output: coefficients 𝜆 , factor matrices 𝐴 𝜖 ℝ “× “  

Initialize: randomly initialize  𝐴  
repeat 
    for n = 1, …, N do 

        𝑇 = 𝐴( ) 𝐴( )  ∗ … ∗ 𝐴( ) 𝐴( )  ∗ 𝐴( ) 𝐴( )  ∗ … ∗ 𝐴( ) 𝐴( ) 
        𝐴( ) = 𝜒( ) 𝐴( ) ⊙ … ⊙ 𝐴( ) ⊙ 𝐴( ) ⊙ … ⊙ 𝐴( ) 𝑇  
    end for 
until the convergence criterion is satisfied 
 
Generally, the CP decomposition has a computational complexity of O(NIr), where N is the 
dimension, I ∈ ℝ  is a vector of the shape of the tensor, and r is the rank, such that r ≪ 𝑁. 
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This is linear to tensor order. For example, the discretization of the 5-variate (columns) 
dataset over 100 sample points (rows) on each axis would yield 1005 = 10 000 000 000 
sample points, while a rank-2 CP representation would require only 5 ×  2 ×  100 =  1000 
sample points. It is also worth noting that CP optimization is difficult for high-order tensors, 
converges slowly, may produce an unstable estimation of its components, and generally, 
factor matrices can be arbitrarily reordered and scaled.  
Example CP applications:  

• Time-varying electroencephalographic (EEG) spectrum arranged as a three-
dimensional array with modes corresponding to time, frequency, and channel, is 
compared to space/time ICA and PCA in (Miwakeichi et al., 2004).  

• Vowel-sound data where different individuals (mode 1) spoke different vowels 
(mode 2) and the formant (i.e., the pitch) was measured (mode 3) in (Harshman, 
1970). 

• Multi-subject fMRI data is analysed with a three-way extension of independent 
component analysis (ICA) and CP, and the differences in terms of the higher-order 
statistical properties were identified (Stegeman, 2007).  

4.1.2 Tucker Decomposition 
The Tucker decomposition is most cited and is considered a higher-order (or multi-way) PCA. 
It decomposes a tensor into a core tensor (not a diagonal core tensor of weights as in CP 
decomposition) multiplied by a factor matrix along each mode. This enables capturing the 
arbitrary interaction of factors among each mode independently from each other (mixed 
modes). For a given tensor 𝜒  𝜖 ℝ “× “ “×” …”×”  , it is computed using mode-n 
multiplication of 𝒢 ∈ ℝ × ×…×  as the core tensor such that the values 𝑅  denotes the 
rank along the kth mode, and A(k) ∈ ℝ“ “ ×  as the orthogonal factor matrices for each 
mode k. Given a tensor of order 3, its Tucker decomposition is defined as: 

𝜒 ∈ ℝ ≈ 𝒢 × 𝐴 × 𝐵 × 𝐶 
It is defined using outer products on the vector level as follows: 
𝜒 ≈  ∑ ∑ ∑ 𝑔 𝑎 ∘ 𝑏  ∘ 𝑐   

The scalar representation is defined as follows: 

𝑥 ≈ 𝑔 𝑎 𝑏 𝑐  

And the compact form is ⟦𝒢; 𝐴,  𝐵,  𝐶⟧, where. 
The N-Dimensional generalisation is 𝑋 𝜖 ℝ “× “ “×” …”×”   as 𝜒 ≈ 𝒢; 𝐴( ),  𝐴( ), … . , 𝐴( )  , 
such that �̂� is estimated from 𝑥 …  =  ∑ … ∑ … 𝑔 …  𝑎

( )
∘ 𝑎

( )
∘ …  𝑎

( )
 . 
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Figure 3: The Tucker decomposition of a third-order tensor. 

This can be expressed in matrix form by unfolding 𝜒 and G and using the Kronecker product 

⊗ as follows: 𝜒 = 𝐴( )𝒢( ). 𝐴( ) ⊗ … ⊗  𝐴( ) ⊗  𝐴( ) ⊗ … .⊗ 𝐴( )  
The CP decomposition can be considered a special case Tucker decomposition in which the 
core tensor Λ is super diagonal such that R1 = R2 = … RN, containing the weights/coefficient 
along the diagonal describing an interaction between one mode factor matrix and another 
mode factor matrix. While in Tucker, we have Multiple Linear Ranks (Tucker Rank: (R1, R2, …, 
RN)) for each mode and the core tensor captures the underlying multi-way structure of 
tensor data. Standard 2-dimensional PCA is a Tucker 1 decomposition by setting the factor 
matrices to the Identity matrix I and capturing the variance in mode-1 independent of the 
other modes. Using ALS, Tucker 2 alternates the I matrix to find other modes’ variance. The 
HOSVD used for tensor compression requires that the factor matrices and the core tensor 
be all orthogonal. Higher-order Factor Analysis is also considered a special case of the 
Tucker decomposition. 
TensorFaces which will be reviewed in detail in chapter six is an example of higher-order 
SVD based on the Tucker decomposition. It takes facial images of different people from 
different angles, lighting, facial expressions, and more modes as required. It is significantly 
more accurate than PCA face recognition methods and valuable for compression and 
removing irrelevant effects (Vasilescu and Terzopoulos, 2002).  
The Tucker decomposition generally has a computational complexity of O(NIr + rN), where N 
is the dimension, I ∈ ℝ  is a vector of the shape of the tensor, and r is the rank. This is 
exponential to tensor order but is more stable and produces a better approximation than CP 
decomposition. Tucker decomposition does not produce unique factor matrices and can be 
rotated along each mode. 
In ch3.ipynb, Tensorly Python package implementation of CP and Tucker examples are 
presented. Other Python packages provide tensor decomposition implementation, such as 
scikit-tt (https://github.com/PGelss/scikit_tt), and HOTTBOX 
(https://github.com/hottbox/hottbox). 
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4.1.3 Other Tensor Decomposition Approaches 
Other tensor decomposition approaches have been proposed in the literature. These 
include but are not limited to the following: 

 INdividual Differences in SCALing (INDSCAL): the method is a special case of 3-
way CP suitable for 3-way tensors that are symmetric in 2 modes. This is 
implemented in scikit-tensor (https://github.com/mnick/scikit-tensor).  

 CANonical Decomposition with LINear Constraints (CANDELINC): the method 
imposes linear constraints in one or more of the factor matrices, such as being 
orthonormal or replaced with one that generates the same orthogonal column 
space. It is useful for large-scale datasets for compression and regularisation. Its 
applications include multicollinearity in chemometric datasets. 

 PARAFAC2 simultaneously decomposes a collection of matrices, with each 
having an equal number of columns but a different row size, allowing for distinct 
factors associated with different frontal slices in the first mode. Example 
Application: PARAFAC2 handles time shifts in resolving chromatographic data 
with spectral detection. In this application, the first mode corresponds to 
elution time, the second mode to wavelength, and the third mode to samples 

 DEDICOM is a decomposition into directional components that describe tensor 
𝜒 as an asymmetric relationship between I objects. Such as I countries, and the 
Iij is the exports from country i to country j. The method identifies that Latent 
components in R and groups the I objects accordingly, and A is factor loadings 
(for example, the interactions of countries in groups) applying scaling and 
rotations as required to maximise the variance across matrix A.   Example 
Application: (Bader, Harshman and Kolda, 2007) applied their ASALSAN method 
for computing DEDICOM on email communication graphs over time. In this case, 
xijk corresponded to the (scaled) number of email messages sent from person i 
to person j in month k. This is also implemented in scikit-tensor. 

 PARATUCK2, combines CP and Tucker 2 to generalise DEDICOM to capture the 
interactions between two sets of interacting objects, similar to PLS in the LSL 
context. 

 Nonnegative variants are suitable for datasets in which the interpretation 
requires nonnegativity for physical or psychological reasons. Tensorly provides 
several non-negative tensor decomposition algorithms. 
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Figure 4; Parafac2 in (a) and DEDICOM in (b) 

The important other tensor decomposition formats that the next chapter will build on are: 
 The Hierarchical Tucker(HT) decomposition decomposes a tensor hierarchically 

similar to a binary tree split. In HT decomposition, the core tensor must be less 
than or equal to the third order and no more than three-factor matrices can be 
connected to the core tensor. In tensor networks (explained in chapter four), 
this can be achieved by a hierarchy of nested separation to split a higher order 
tensor into lower levels in the tree, such that each tensor has three modes only. 
For example, given a tensor 𝜒𝜖 ℝ × × ×…× , the objective is to define disjoint 
subsets u, v such that, u={1, …, N0), and v={N0+1, …. N}, where 𝑡 = 𝑢 ∪ 𝑣 ⊏

1,2, … , 𝑁 and 1 <= N0 <= N. For example, given a fourth-order tensor 𝜒 , N0 = 2, 
such that u={1,2}, v={3,4}, and the HT is defined as 𝜒 =

∑ ∑ 𝑔
( )

 𝑎
( )

(𝑥 , 𝑥 ) ∘ 𝑎
( )

(𝑥 , 𝑥 ), such that 𝑎
( )

(𝑥 , 𝑥 ) =

∑ ∑ 𝑔
( )

 𝑎
( )

𝑎
( ) and 𝑎( )

(𝑥 , 𝑥 ) = ∑ ∑ 𝑔
( )

 𝑎
( )

𝑎
( ). 

 The Tree Tensor Network States (TTNS) format extends HT, creating many 
disjoint subsets. 

Detailed algorithms for computing these decompositions and example applications for 
tensors of different orders can be found in (Cichocki et al., 2016, p. 1). 
 
Figure 5, Figure 6, and Figure 7 show taxonomies of some proposed higher-order PCA 
algorithms as an unsupervised learning method, higher-order LDA algorithms as a 
supervised learning method, and ICA, CCA, PLS higher-order MLS some proposed algorithms, 
illustrating the projection used, the optimisation criteria, the number of modes it applies to, 
the model name, and the learning model. Chapter four and chapter eight in (Lu, Plataniotis 
and Venetsanopoulos, 2014) discuss more details about these algorithms and list their 
original publications for even more details. 
 

(a)    (b) 
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Figure 5: A taxonomy of PCA-based MSL algorithms 

 
Figure 6: A taxonomy of LDA-based MSL algorithms. 

 
Figure 7: Taxonomy of ICA, CCA, PLS based MSL algorithms. 

 
Python notebook ch3.ipynb, multi-wayExamples.ipynb and tensorisation.ipynb show 

examples of the tensor decompositions methods discussed in this section. 
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4.1.4 Summary 
 
All presented methods are very introductory. Most of them are computationally expensive 
for larger tensors. Researchers adopted the Alternating Least Square (ALS) method using 
approximations of the rank, multiplying the input matrix by random Gaussian matrices, and 
by iterative methods until convergence. Good approximations have been achieved with very 
low-rank factors. Many approaches have been proposed to handle large tensors, such as: 
decomposing only a compressed representation of the original tensor, sparse tensor 
multiplications for sparse tensors, decomposing a sample (sub-tensor) of the original 
tensorial data, parallelizing or distributing the decomposition computation, or using Tensor 
Networks as will be presented in the next section (Hou, 2017).   
 

4.2 Tensor Graphical Notation  

 (a)  (b) (c)  (d) 

  

(e) (f)  
Figure 8: Tensor Network representations, for (a) scalar, (b) vector, (c) matrix, and (d) 3-way tensor, (e) 4-way 
tensor, (f) 5-way tensor. 

The graphical tensor notation uses graph data structures of nodes and edges. The graph 
nodes describe tensors (can be matrices, vectors or even scalars) as a circle, a square, a dot 
or a polygon such as a pentagon or a hexagon. Each outgoing edge of the tensor represents 
the index of a particular dimension, and the order is the number of edges. Figure 8 
illustrates some tensor graphical possible representations of tensors up to order 5. This 
notation enables the graphical illustration of Tensor contractions, from which some are 

I I    = J I I 

J 

= 
J 

K I 

K 

I 

J 

= 

= … 

= … 

… 

… 
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listed in Table 1, showing their equations, graphical tensor notation, and some explanations. 
Tensor contraction is denoted as a connection between two nodes. As explained in chapter 
one, this is the multilinear product operator between two tensors on a specific mode, which 
corresponds to the summation over the indices of that mode. 
 
Table 1: Some Tensor contractions illustrations using Tensor Networks Notation 

 =  
𝐴 𝑥 = b  Matrix-vector 

multiplication 

=

 

𝐴 𝐵 = 𝐶  Matrix-Matrix 
Multiplication 

 tr(A) = a Connecting two index 
lines of the same tensor 
corresponds to a trace. 
This produces a scalar 
value. Similarly, any 
network of all tensor 
indices connected will 
result in a scalar. Only 
unpaired indices/edges 
will count towards the 
resulting tensor order. 

 𝐴 𝐵 = 𝑇𝑟[𝐴𝐵]=a Transpose of Matrix-
Matrix Multiplication 

=

 

∑ 𝒯 𝑉 =ℛ  Tensor-Matrix 
Multiplication 

=

 

𝒯 𝒱 = ℛ  Tensor-Tensor 
Multiplication with the 
third mode in the first 
tensor = first mode of the 
second tensor, The 
resulting contracted 
tensor is shown. 

i i j 

k i 

i j k 
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=

 

𝒜 ℬ , 𝒞 , 𝒟 =

, ,

ℛ  Tensor-Tensor 
Contraction shows upper 
indices not involved in the 
contraction and lower 
indices involved in 
different contractions. 

= ∑    
𝐶𝑃 𝜒 = 𝑎 ∘ 𝑏  ∘  𝑐 ∘  𝑑   

The CP decomposition for 
a 4th-order tensor 

 

Hierarchical matrix 
structures, a 4th-order 
tensor representation for 
a block matrix 
𝜒𝜖 ℝ ×  (a matrix of 
matrices), which 
comprises block matrices 
X , 𝜖 ℝ ×  

 

A 5th-order hierarchical 
tensor 

A 6th-order hierarchical 
tensor 

 
Ingoing or outgoing arrows onto index lines illustrate the Einstein notation showing 
contravariant/up versus covariant/down indices, respectively. The physics community uses 
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unique tensors’ icons to denote different tensor types, such as isometric tensors as triangles 
and unitary tensors as rectangles. A diagonal line through the middle of the tensor shape 
illustrates a diagonal tensor. Hyper-edges or multiple indices which are “locked” together 
can be notated by introducing “Kronecker delta” or “spider” tensors, often notated by small 
black dots. These tensors can have an arbitrary number of indices, and only diagonal 
elements are equal to one (“The Tensor Network,” n.d.). The last three rows in the table 
represent hierarchical tensors and their graphical representations (Cichocki et al., 2016, p. 
1).  
 
The Python notebook ch4.ipynb, uses tensortrace application created in a gamemaker 

studio environment that is available for download from  https://www.tensortrace.com/, to 

graphically create four examples of random networks. Then, the tool generates the 

python code for their contraction using the ncon Python function (“Network CONtractor”) 

(Pfeifer et al., 2015).  

4.3 Tensor Networks 

Chapter three discussed various tensor decomposition algorithms that factorise tensor 
objects into factor matrices. Tensor Networks (TN) decompose higher-order tensors into 
sparsely interconnected lower-order core tensors. The lower-order core tensors are the 
dominant components in the large-scale tensorial dataset. This decomposition enables data 
approximation that captures the relevant/important/dominating multi-way interactions to 
compress large-scale data by removing irrelevant information. This decomposition also 
enables the distributed storage and computation of large-scale tensors. As discussed in 
chapter two, large-scale high dimensional datasets often contain subspace of much lower 
dimensionality embedded in the ample high dimensional space. TN decomposition learns 
this subspace approximating the original high dimensional space in full format and 
distributes it on lower rank cores in sparse format.  
For example, an N-variate function 𝑓(𝑥)  =  𝑓(𝑥 , 𝑥 , . . . , 𝑥 ) can be approximated by a 
finite sum of products of individual functions, each depending on only one or a very few 
variables, such as 𝑓(𝑥 , 𝑥 , . . . , 𝑥 ) ≈ 𝑓( )(𝑥 )𝑓( )(𝑥 ) … 𝑓( )(𝑥 ). These are coordinate 
functions, as explained in chapter three. The sparse format reduces the storage requirement 
from ∏ 𝐼 to ∑ 𝐼 , which is ≪ 𝐼 . The sparse format is robust in the presence of noise 

and missing data flexible enough to incorporate various constraints as required. TN extends 
the 2-way (matrix) Component Analysis (2-way CA) methods to multi-way component 
analysis (MWCA), capturing the relations between the different modes while growing 
linearly with the dataset size. This decomposition can be performed in tensorial datasets or 
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after tensorising vector or matrix form datasets. All tensor operations after that can be 
performed on the core tensors. TN formats enable emerging optimisation algorithms such 
as random coordinate descent (RCD) schemes, sub-gradient methods, alternating direction 
method of multipliers (ADMM), and proximal gradient descent methods.  
 
There are many algorithms for Tensor Networks. This section will discuss  Matrix Product 
State / Tensor Train and Tensor Rings. Other methods include Matrix Product Operator 
(MPO), Tree Tensor Network / Hierarchical Tucker, Projected Entangled Pair States (PEPS) 
and Multi-scale Entanglement Renormalization Ansatz (MERA). 
 
 

4.3.1 The Tensor Train Decomposition 
The Tensor Train (TT) and Tensor Chain (TC) decomposition are special cases of the 
Hierarchical Tucker Decomposition introduced in chapter three. In these methods, each core 
tensor is chained in series and aligned by having the same dimension, and all the factor 
matrices are unit matrices as leaf nodes. This decomposition transforms a large problem 
into several tractable small-scale problems. TC connects the last tensor with the first, 
making all tensors of the same dimension, while TT has its first and last tensors of one less 
dimension than the intermediate tensors of order 3. The physics communities refer to TC 
decomposition as the Matrix Product State (MPS) decomposition with periodic boundary 
conditions (PBC), and the TT decomposition as the MPS decomposition with the Open 
Boundary Conditions (Oseledets, 2011).  

 
Figure 9: Tensor Train decomposition showing first and last core tensors of order-3 and internal tensors of order4. 

Given an Nth-order tensor 𝜒𝜖 ℝ × × ×…× , the TT decomposition is:  
𝜒 = 𝒜 × , 𝒜 … × 𝒜  

Such that each entry in 𝜒 is: 

𝓍 ,… = … 𝒜 (𝑟 , 𝑖 , 𝑟 ) 𝒜 (𝑟 , 𝑖 , 𝑟 ) … 𝒜 (𝑟 , 𝑖 , 𝑟 ) 

Where 𝒜  𝜖 ℝ × × , R0 = RN = 1; n = 1, 2, …, N, such that 𝒜  and 𝒜  are of lesser rank 
than the internal core tensors. The mode ordering of the core tensors is important, and their 
permutations should be optimised. 𝒜 × , 𝒜 means mode-3 from 𝒜  multiplied by 
mode-1 from 𝒜  and similar notation is used elsewhere. The approximately reconstructed 

A1 A2 An A
 

… … 
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tensor from its TT decomposition is �̂� with each entry is defined in terms of entries in 𝒜 as 
follows: 

𝑥 , ,…, = 𝑎 , ,

, ,…,

, ,…,

𝑎 , , 𝑎 , , … 𝑎 , , 𝑎 , ,  

Similar to Tucker decomposition, the TT rank is defined for each mode as (R1, R2, …, RN), 
where  𝑅 = 𝑟𝑎𝑛𝑘(𝜒 ), where m means matricization, c means canonical, and n means 
mode-n.  𝜒 = 𝑚𝑎𝑡(𝜒) , such as mat is the mode-n canonical matricisation of the 
tensor, which extracts n dimensions from the original tensor as the first dimension of the 
resulting matrix and the remaining (N-n) dimensions as the second dimension. This notation 
is used in the following equations. The TT rank increases in proportion to the dimension of 
the original data tensor 𝜒. 
Expressing large tensors in their TT decomposition enables tensor operations on the smaller 
core tensors, reducing the number of parameters to estimate. For example, Given two 
tensors expressed in their TT core tensors: 
𝜒 ∈ ℝ × ×…× = 𝜒 × , 𝜒 × , … × , 𝜒  with 𝜒 ∈ ℝ × ×  and  
𝒴 ∈ ℝ × ×…× = 𝒴 × , 𝒴 × , … × , 𝒴  with 𝒴 ∈ ℝ × ×   
For 𝑛 = 1, 2, … , 𝑁 and Rn are the tensor’s 𝜒 TT rank, and Qn are the tensor’s 𝒴 TT rank.  

 Their Hadamard product is  𝒵 = 𝜒⨀𝒴 =  𝒵 × ,  𝒵 × , … × ,  𝒵  , where each 
core tensor   𝒵 ∈ ℝ × × = 𝜒 ⊗ 𝒴 for n=1, 2… N.  

 Their sum is  𝒵 = 𝜒 + 𝒴, such that  𝒵 =
𝜒 0
0 𝒴

, with first and last core tensors 

are defined as  𝒵 = [𝜒 𝒴 ] and  𝒵 =
𝜒
𝒴 . The TT rank of 𝒵 equals the sum of 

the TT rank of 𝜒 and 𝒴: (𝑅 + 𝑄 , 𝑅 + 𝑄 , … , 𝑅 + 𝑄 ) 
 Their scalar/dot/quantitative product is 𝒵 = 𝒳 ∙ 𝒴, (𝒵 ) = 𝒳 (𝒴 ) by 

using cumulative array variable 𝑎 = 0, and subsequent values 𝑎 =

𝒳 × , (𝒴 × 𝑎 )  ∈ ℝ × , for 𝑛 = 2, … , 𝑁, such that the last value in the 
array 𝑎  will be equal to  𝒳 ∙ 𝒴 (Oseledets, 2011). 

Various methods solve the TT decomposition, including: 
1. SVD-based TT algorithm (TT-SVD) performs mode-n matricisation on the input 

tensor and then performs HOSVD decomposition to compute a minimum possible 
compression rank. 

2. Algorithms based on low-rank matrix decomposition(LRMD) are similar to TT-SVD 
but simplify the SVD decomposition using matrix cross-approximation or CR 
decomposition. 

3. Restricted Tucker-1 decomposition(RT1D), converting the original input tensor into 
a 3rd-order tensor and then performing Tucker-1 and Tucker-2 decomposition. 
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4. A generalised alternating least squares (ALS) algorithm and modified ALS (MALS) 
algorithm facilitate the self-adaptation of ranks by using SVDs or employing a 
greedy algorithm. 

The TT decomposition has a computational complexity of O(NIr2), where N is the dimension, 
I ∈ ℝ  is a vector of the tensor’s shape, and r is the rank. The number of parameters is 
linear to the tensor order. The increased rank increases the computational complexity, and 
methods such as TT Trunction are used to approximate the solution using a smaller rank. TT 
Trunction performs the Nth canonical matricisation of the core tensor and performs a low-
rank matrix approximation (SVD and QR). Several modified tensor representations based on 
TT have been proposed in the literature. These propositions include the quantised tensor-
train format (QTT), the block tensor-train format (BTT), and the cyclic tensor-train (CTT). TT 
representation has been applied to large-scale problems in numerical analysis, such as the 
optimisation of the Rayleigh quotient, e.g., density matrix renormalisation group (DMRG), 
and the approximate solution of linear systems, e.g., alternating minimal energy (AME). 
TT/MPS are the most popular solutions for tensor networks in 1D. As seen above, the 
factors are linearly connected in 1D. TT and HT do not allow cycles, but TC allows cycles. 
Various layered tensor networks have been introduced in the literature enabling analysis on 
a 2D lattice or deeper layers to reduce the TT rank by increasing the number of core tensors 
but with more minor ranks. The 3rd-order core tensors of TT were replaced by 5th-order core 
tensors in the Projected Entangled Pair States (PEPS) method that connects higher-order 
tensors to represent a physical state in a two-dimensional network. Also, TT 3rd-order core 
tensors were replaced by 6th-order core tensors in the Projected Entangled Pair Operators 
(PEPO) method. The Honey-Comb Lattice (HCL) uses 3rd-order core tensors, and the Multi-
scale Entanglement Renormalization Ansatz (MERA) uses 4th-order tensors. The 
computational complexity increases in proportion to the number of cycles, with MERA, 
generally having a smaller size and dimension, reducing the number of parameters. The 
cycles explain correlations between variables. These developments are mainly contributed 
by the researchers from quantum physics communities studying the interactions of many 
particle systems (Ji et al., 2019). MERA is implemented in Python at 
https://www.tensors.net/mera, MPS Python implementation can be found at 
https://www.tensors.net/mps, https://www.tensors.net/mps-vumps  
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(a) (b) (c) (d)

(e) (f)  
Figure 10: (a) PEPS uses 5th-order core tensors, (b) PEPO uses 6th-order core tensors, (c) HCL uses 3rd-order core 
tensors, (d) MERA uses 4th-order tensors. The blue rectangle represents core tensors, and the red circle 
represents factor matrices, (e) MPO of leaf core tensors of order 3, and internal ones of order 4, and (f) TTNS 
binary tree (Ji et al., 2019). 

TNs enable change of topology while keeping the modes and their interactions intact. HT/TT 
allow sequential contractions of the core tensors to reduce the computational complexity. 
Algorithms that enable cycles can be modified to eliminate the cycles by contractions and 
reduce the complexity. Converting tensor networks with cycles to trees reduces the 
computational complexity as well.   
 
The Python notebook ch4.ipynb shows Tensorly Python package implementation of TT. 
Tensorly also implemented a regression example in TT format, published at 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tt-
compression.ipynb. 
The original TT paper has its Python package “ttpy” Python package published at 
https://github.com/oseledets/ttpy. There are other Python packages as well, such as: 

 “scikit_tt” is published at (https://github.com/PGelss/scikit_tt/), and its 
requirements are demonstrated in ch4.ipynb. The TT class has many interesting 
features, and the package has many examples for solvers, regression, and Data 
Analysis methods.  

 “ttrecipes” Python package is built on top of ttpy. It was built by (Cichocki et al., 
2016, p. 1) and published at https://github.com/rballester/ttrecipes. Thet have 
examples for tensor completion problems, and tensor compression.  
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4.3.2 Tensor Rings  
Like tensor chain (TC), Tensor Ring (TR) decomposition employs a circular dimensional 
permutation invariance and equivalently makes first and last core tensors of similar shape as 
central core tensors. This decomposition generalises TT decomposition using linear 
combinations of its core tensors. TR relaxes the constraints that R1 = RN+1 = 1, and no 
dimension permutation optimisation is required, enabling circular multiplications of the 
trace of all core tensors. 

 
Figure 11:Tensor Ring Illustration showing that only order-3 core tensors are used and connected circularly. 

Given an Nth-order tensor 𝜒𝜖 ℝ × × ×…× The TR decomposition is:  

𝜒 = ℜ(𝒜 , 𝒜 , … 𝒜 ) = 𝑎 𝛼 ,𝛼 °𝑎 𝛼 ,𝛼 ° … °𝑎 𝛼 ,𝛼

, ,…

, ,…

 

Where the TR rank is defined for each mode as (R1, R2, …, RN), core tensors 
𝒜  𝜖 ℝ × × , n = 1, 2, …, N, and last one 𝒜  𝜖 ℝ × ×  completes the circular 
connection with the first one, such that R1 = RN+1. The symbol ‘°’ denotes the outer product 
of vectors and 𝑎 𝛼 ,𝛼  𝜖 ℝ  denotes the 𝛼 ,𝛼

th mode-2 fibre of tensor 𝒜 . 𝒜  
and 𝒜  is multiplied along one dimension indexed by 𝛼 ,, which is thus denoted by a 
connection with the size of that mode (i.e., R2). This decomposition indicates that the whole 
tensor can be composed of the sum of rank-1 tensors generated from N vectors taken from 
each core respectively. The main difference with TT decomposition is the circular dimension 
permutation invariance such that the TR decomposition of 𝜒𝜖 ℝ × × ×…× =

ℜ(𝒜 , 𝒜 , … 𝒜 ) , if we shift the dimensions of 𝜒  k positions to the left as  
�⃖� 𝜖 ℝ ×… × × ×…× , then the TR decomposition of �⃖�  is defined as �⃖� =

ℜ(𝒜 , … , 𝒜 , 𝒜  … 𝒜 ). 
 
In TR decompositions, all shifting is equivalent such that:  

𝜒 = ℜ(𝒜 , 𝒜 , … 𝒜 ) = ℜ(𝒜 , 𝒜 , … 𝒜 , 𝒜 ) = ⋯ =  ℜ(𝒜 , … , 𝒜 , 𝒜  … 𝒜 )

= ⋯ =  ℜ( 𝒜 , 𝒜  … 𝒜 ) 
The approximately reconstructed tensor from its TR decomposition is �̂� with each entry is 
defined in terms of entries in A as follows: 

𝑥 , ,…, = 𝑇𝑟{𝒜 (𝑖 )𝒜 (𝑖 ) … 𝒜 (𝑖 )} = 𝑇𝑟{ 𝒜 (𝑖 )} 

A1 A2 … … An A
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where the ‘Tr’ is the trace function,   𝒜 (𝑖 ) denotes the 𝑖 th lateral slice matrix of the 
latent tensor 𝒜 , which is of size rk × rk+1. Any two adjacent core tensors are of equal 
dimension rk+1 on their corresponding mode.  

 
Figure 12: A circular graphical representation of the tensor ring decomposition (Zhao et al., 2016) 

Tensors represented in their TR decomposition can perform tensor operations such as those 
defined for the TT decomposition, including addition, multilinear product, Hadamard 
product, inner product and Frobenius norm, performed efficiently on each core. 
Minimising the ranks and the error solves the TR decomposition: 

min
 ,…,

𝑟 

𝑠. 𝑡.: ‖𝜒 − ℜ(𝐴 , 𝐴 , … 𝐴 )‖ ≤ 𝜖‖𝜒‖   
Several approaches are used in the literature, including: 

 TR-SVD is a sequential SVD-based approach. The algorithm uses subchains of the 
core tensor multiplications formed by n-unfolding and n-mode matricisation steps, 
then merging into a single core by multilinear products. These subchains form 
several TT representations on which to apply the TT_SVD algorithm. This approach 
does not guarantee optimal TR-ranks but converges fast. 

 TR-ALS builds on ALS concepts given a fixed pre-defined rank by optimising one core 
while fixing the others and alternating between them until some defined 
convergence stopping criteria. This approach is faster but uses fixed pre-defined 
ranks.  

 ALS-AR also builds on ALS concepts but uses adaptive ranks from initial values that 
get updated during the iterations to minimise the error.  

 BALS is a block-wise ALS algorithm based on truncated SVD on blocks (subchains) 
formed by merging adjacent core tensors, optimising for one block and fixing the 
others while updating the ranks. This algorithm is better in finding the most optimal 
rank without increasing iterations due to the block-wise optimisation iterations of 
merged adjacent cores rather than one-by-one. 

The number of parameters, and hence the computational complexity in TR representation, 
is O(NIr2), which is linear to the tensor order N, similar to TT However, TR is a more 
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generalised, flexible and powerful representation with usually more minor ranks than TT 
(Zhao et al., 2016). 
 
The Python notebook ch4.ipynb shows “tednet” Python package implements various tensor 
decomposition algorithms, including CP, Tucker2, TT, and TR. Their code and documentation 
are published at https://github.com/tnbar/tednet.  
There are several Matlab implementations for TR decomposition, such as  
https://qibinzhao.github.io/ and https://github.com/oscarmickelin/tensor-ring-
decomposition.  
 

4.4 Machine Learning Tensor Decomposition 
Applications: 

This section will present two tensor decomposition machine learning applications. The first 
one is the tensor completion example, based on CP decomposition. The second application 
is a class of algorithms to efficiently extend regression approaches to tensorial datasets.  

4.4.1 Tensor Completion Application 
Tensor completion is an extension to the matrix completion class of problems that aims to 
interpolate missing values in a dataset from the given values. This is also called inpainting or 
imputation of missing values. A 3-way association tensor completion application example is 
presented in (Huang et al., 2021). It is important to understand the dataset and the 
objective of the analysis that needs to be performed on it. The dataset used in this paper is 
collected from the HMDD (the Human microRNA Disease Database), which is a database 
that curates biological lab experiment-supported evidence for human microRNA (miRNA) 
and disease associations. Auxiliary data are the disease descriptors collected from Medical 
Subject Heading (MeSH), a comprehensive controlled vocabulary thesaurus about life 
science, to calculate disease semantic similarity. MicroRNAs (miRNAs) is a small single-
stranded non-coding RNA molecule (containing about 22 nucleotides) found in plants, 
animals and some viruses that functions in RNA silencing and post-transcriptional regulation 
of gene expression. They play crucial roles in various biological processes associated with 
human diseases, such as cell growth and division, tissue differentiation, embryonic 
development and apoptosis, cell cycle regulation, inflammation, and stress response. For 
example, miR-129, miR-142-5p, and miR-25 are differentially expressed (found in the human 
cell in different quantities) between paediatric/children's central nervous system neoplasms 
and normal tissue, indicating their role in oncogenesis. Identifying potential miRNA-disease 
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associations contributes to understanding the molecular mechanisms of miRNA-related 
diseases in order to discover new biomarkers and/or develop new therapies. The MiRNA 
role in disease prominently diverges. For instance, Genetic variants of microRNA (mir-15) 
may affect miRNAs' expression level, leading to B cell chronic lymphocytic leukaemia. In 
comparison, circulating miRNAs have the potential to detect breast cancer in the early stage 
(the quality and quantity changes of circulating miRNAs are associated with the initiation 
and progression of cancer and can be easily detected by basic molecular biology 
techniques). The four different types of miRNA-disease associations considered in this paper 
are illustrated in Figure 13. 
Previous work focused on predicting whether a miRNA-disease association exists or not 
(binary classification/prediction). These methods can be grouped mainly into three 
categories: (1) methods based on score function, (2) methods based on complex network or 
graph algorithms, and (3) methods based on machine learning algorithms. Instead of 
building a binary graph association, this paper presented the dataset in a 3-way structure of 
miRNA-disease-type triplets as a tensor. It introduced Tensor Decomposition methods to 
solve the prediction task, such that the type explains the roles of miRNAs in disease 
development or identification. A miRNA-disease type can be naturally modelled as a binary 
tensor where every element represents whether the corresponding entry (miRNA, disease, 
type) exists or not. The authors formulated the multi-type miRNA-disease association 
prediction as a tensor completion task. Their goal was to complete the tensor for exploring 
the unobserved triple associations using Tensor Decomposition Methods. 
 

 
Figure 13: The figure on the left illustrates the binary association graph, and the figure on the right illustrates the 
MiRNA role in diseases’ defined four types 

The paper proposed a novel method, Tensor Decomposition with Relational Constraints 
(TDRC), which incorporates biological features (miRNA-miRNA similarity and disease-disease 
similarity) as relational constraints to further the existing tensor decomposition methods. 
TDRC employs the alternating direction method of multipliers (ADMM) framework and 
resorts to the conjugate gradient (CG) method to avoid computing an inverse matrix in inner 
iterations of ADMM for lower time complexity.   
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The authors compared TDRC performance against two previous tensor decomposition 
methods and a third binary network-based approach: 
1) CP decomposition without auxiliary information, as explained earlier in this chapter. 
2) Tensor Factorization Using Auxiliary Information (TFAI) considers incorporating auxiliary 
information into the CP model via introducing graph Laplacian regularizations. 
3) NLPMMDA is the latest heterogeneous Network-based Label Propagation MiRNA MiRNA 
Disease Association method that predicts each type of miRNA-disease association by label 
propagation on the miRNA-miRNA disease-disease similarity network. 
Compared with the NLPMMDA, tensor decomposition-based methods significantly improve 
because these models dissect the data in a higher dimensional perspective through the 
tensor decomposition and capture complicated ternary relationships of miRNA-disease-type 
triples. TFAI works slightly worse on HDMM v3.2 than CP, which may be attributed to its 
weak ability to incorporate the auxiliary information, while TDRC achieved much better 
performance as it makes sufficient use of the auxiliary information. 
The authors concluded that TDRC could produce better performance while being more 
efficient. The reconstructed tensor's low-rank property may help further improve the 
performance. The python code of the paper is found at 
https://github.com/BioMedicalBigDataMiningLab/TDRC. The mathematical formulation of 
the paper is as follows and is illustrated in Figure 14: 

• Given a set of miRNAs ℰ =  {𝑒 , 𝑒 , … , 𝑒 } , a set of diseases 𝐷 =  {𝑑 , 𝑑 , … , 𝑑 } 
and a set of association types ℛ =  {𝑟 , 𝑟 , … , 𝑟 }, we can construct a multi-relation 
bipartite graph 𝒢. A triple (𝑒 , 𝑑 , 𝑟 ) as a link in the graph 𝒢 denotes that the 
association between the miRNA ℯi and the disease 𝒹  with the type rt . 

• 𝒢 is a binary three-way tensor 𝒳 ∈  {0, 1} × ×  with miRNA mode, disease mode 
and type mode, where each slice is the adjacency matrix with regard to a type of 
miRNA-disease associations. 

• An entry 𝑥  of the tensor is set to 1 if (𝑒 , 𝑑 , 𝑟 ) ∈ 𝒢. Otherwise, the entries are set 
to 0.  

• The tensor 𝒳 is extremely sparse with many unknown entries, and thus it is 
challenging to reach the goal only by using known links.  

• Hence, the authors considered biological similarities as auxiliary information 
to tackle the challenge. 

• Given the miRNA-disease-type tensor 𝒳, the CP decomposition model can be 
represented as the following optimization problem (solved by Alternating Least 
Squares (ALS) method): 

• min
, ,

‖𝒳 − ⟦𝐶, 𝑃, 𝐹⟧‖  

• Here, ‖ ⋅ ‖ is the norm of a tensor. 𝐶 ∈ ℝm×r, 𝑃 ∈ ℝn×r and 𝐹 ∈ ℝt×r are the 
factor matrices with respect to the miRNA (the ith miRNA is encoded as a 
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vector ci:), disease (the jth disease is represented as a vector pj:) and type 
mode in F, which are usually considered as latent representations for the 
corresponding modes.  

• ⟦ 𝐶, 𝑃, 𝐹⟧ is the reconstructed tensor, and its (i, j, t)th element is calculated by 
∑ 𝑐 𝑝 𝑓  

• where cil , pil and ftl denote respectively the (i, l)th element of 𝐶, the (j, l)th 
element of 𝑃 and the (t, l)th element of 𝐹. We call r the rank of the 
approximated tensor ⟦ 𝐶, 𝑃, 𝐹⟧.  

• In general, r is set much lower than min(m, n) so that the low-rank property of the 
latent representations is enforced. 

• Then they added the auxiliary information: 
• MeSH descriptors, the hierarchical relationships of diseases, are 

represented as Directed Acyclic Graphs (DAGs), where nodes represent the 
diseases and edges represent the relationships between different diseases 
to calculate the disease semantic similarity.  

• For a disease 𝒹, a DAG denoted as DAG (𝒹) = (N(𝒹), E(𝒹)) is constructed, 
where N(𝒹) is the set of all ancestors of 𝒹 (including itself) and E(𝒹) is the 
set of links from ancestor disease to their children. 

• The semantic contribution of disease 𝒹  ∈ N(𝒹) to disease 𝒹 can be 
calculated as: 

• 𝐶(𝒹,  𝒹 ) =
1 𝑖𝑓𝒹 = 𝒹𝑖

𝑚𝑎𝑥 (∆ × 𝐶(𝒹,  𝒹𝑗)|𝒹𝑗 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝒹𝑖} 𝑖𝑓𝒹 ≠ 𝒹𝑖
, 

where Δ is the semantic contribution factor, and it was set to 0.5 in 
the paper. Then the semantic value of disease 𝒹 is defined as: 

• 𝑆𝑉(𝒹) = ∑ 𝐶(𝒹,  𝒹 )𝒹 ∈ (𝒹)  
• Finally, the semantic similarity between the two diseases 𝒹  and 𝒹  is 

calculated by: 

• 𝑠 = 𝑆 (𝒹 , 𝒹 ) =  
∑ ( (𝒹 ,𝒹) 𝒹 ,𝒹 )𝒹∈ (𝒹 )∩ (𝒹 )

(𝒹 ) 𝒹
 

• The miRNA functional similarity between two miRNAs ℯi, ℯj are calculated as 
follows: 

• 𝑠 = 𝑆miRNA(e , e ) =  
∑ 𝒹, 𝒹∗ ∑ (𝒹, 𝒹∗)𝒹∈𝒟(e ) 𝒹∈𝒟(e ) 

|𝒟(e )| 𝒟(e )
, 

where 𝒟(e ) represents the set of diseases that are associated with 
e  in at least one association type, |𝒟(e )| is the number of 
elements in the set 𝒹∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝒹  ∈𝒟(e )
  𝑆 (𝒹,𝒹 ) 

• Both similarities are denoted as: 
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• Sm ∈ ℝm×m as the miRNA-miRNA functional similarity matrix with 𝑠  

as its (i, j)th element 
• And Sn ∈ ℝn×n as the disease-disease semantic similarity matrix with 

𝑠  as its (i, j)th element. 

• A real-valued function 𝑓(𝑥,  𝑦) = 𝑥𝑀𝑦  is used to approximate the 
similarity between two miRNAs (or diseases) for high-quality relational 
learning, where 𝑀 is a projection matrix, 𝑥 and 𝑦 are the row vectors of 𝐶 
(or 𝑃). 

• The approximation errors are minimized by:  

𝑚𝑖𝑛
, ,

𝛼 𝑠 − 𝑐 :𝑀 𝑐 : + 𝛽 𝑠 − 𝑝 :𝑀 𝑝 :  

• The optimization problem is reformulated in matrix form:  
𝑚𝑖𝑛

, ,
𝛼‖𝑆 − 𝐶𝑀 𝐶 ‖ + 𝛽‖𝑆 − 𝑃𝑀 𝑃 ‖  

• Then adding ℓ  regularization to the combined optimisation: 𝑚𝑖𝑛
, , ,

‖𝒳 −

⟦𝐶, 𝑃, 𝐹⟧‖ + (‖𝑀 ‖ + ‖𝑀 ‖ ) + ‖𝑆 − 𝐶𝑀 𝐶 ‖ + ‖𝑆 −

𝑃𝑀 𝑃 ‖  
 

 
Figure 14: TDRC method to incorporate biological similarities as constraints into the CP model 

This application illustrates a method that can be generalised to tensorizing any relational 
dataset such that there are several types of relationships involved. Example datasets are 
found in social networks friendships as the two subjects involved, and the type of 
relationship can be likes, retweets, comments, content sharing, and tagging.  A 3-way tensor 
slice might capture each available relationship by fixing the index of the two subjects 
involved and varying the relationship index. 

4.4.2 Tensor Regression 
As chapter one explains, regression is one of the most fundamental supervised machine 
learning algorithms. it fits a dataset of labels including y (dependent/ target/ outcome/ 
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response) feature as a function of x (independent/ predictor) features. The fitting can be a 
linear equation such as 𝑦 = 𝜖 + ∑ 𝑤 𝑥 , such that the w is the estimated regression 
parameters, including 𝑤  as the bias and 𝑥 = 1. Chapter two explains that it can also be a 
non-linear regression using a higher degree polynomial equation or any other non-linear 
parameters such as exponential, trigonometric, and power functions. A multivariate 
regression model is when x is multiple predictors and y is multiple responses.  
A non-parametric regression model does not assume a specific form of the parameters of 
the predictors. These algorithms do not need to define a linear or non-linear function to fit 
the data. They evaluate the mean outcome of the predictor covariates without pre-
assumptions and hence misspecification errors. These methods expand to various machine 
learning algorithms, such as Gaussian Processes (GP), Artificial Neural Networks (ANN), 
Decision Trees, and Support Vector Regression (SVR). These methods usually require much 
more sample data than parametric methods (Hou, 2017). 
 
If the dataset is in a matrix form, a regression model will estimate the regression parameters 
based on the correlation between each feature predictor and the target feature by 
estimating a parameter value for each predictor. Most classical regression algorithms can be 
applied to a dataset in tensor after vectorising or matricising the tensor. This is not 
successful in capturing the multi-way structural information, leading to lower accuracy and 
higher error. These methods will also use more parameters than tensor regression methods, 
requiring more storage and computational complexity. This section surveys the tensor 
regression algorithms that capture the multi-way inherent structures in tensorial data while 
being more efficient computationally and more accurate in avoiding overfitting. These 
methods are based on CP and Tucker decompositions of tensors, as presented earlier in this 
chapter. The tensorial regression models reduce the number of parameters from O(IN) to 
O(NIR), where N is the number of modes, I is the number of elements in each mode, and R is 
the rank, which is usually R≪I. These fewer parameters will be associated with each mode 
independently. Conversely, the traditional regression models on vectorised or matricised 
tensorial datasets combine the modes and the estimated extra parameters, which are 
difficult to interpret.  
A simple tensor regression model is defined as: given an Nth-order tensor 
𝜒𝜖 ℝ × × ×…× , and the output 𝒴 could be a tensor of any order; the regression equation 
is: 

𝒴 = 𝑓(𝒳) + 𝜖 
The f function for linear regression can be the dot product defined in the generalised linear 
tensor regression model as: 

𝒴 = ⟨𝒳, ℬ⟩ +  𝜖 
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Such that the dot product of the predictor and  𝛽 as the coefficient tensor in the same size 
as the predictor 𝜒, capturing its tensor covariate, and is added to 𝜖 as the tensor 
representation error or bias. It can also be non-linear, as defined in chapter two, by using 
polynomial equations or other non-linear functions such as exponential, logarithmic and 
others. Prediction or reconstruction/interpolation can occur based on a dataset of M 
samples as follows: 

𝑥 , ,…, = 𝜒 ,𝛽   

Solving ⟨𝒳, ℬ⟩ by vectorising, both tensors will produce a huge number of parameters. For 
example, an MRI dataset 𝒳 ∈ ℝ × ×  will require 2,097,152 + and five usual 
covariates parameters to estimate, which is intractable. Using the unsupervised PCA 
produces the most dominating principal components that are irrelevant to the input, lose 
the multi-way structural relationship, and are difficult to interpret. 
The CP Tensor Regression defines the ℬ tensor in terms of its rank-R CP decomposition a  
[𝐵 , 𝐵 , … , 𝐵 ] with 𝐵 =  𝑏

( )
, …  , 𝑏

( )
∈ ℝ ×  

such that 𝑦 =  ⟨𝒳, ℬ⟩ +  𝜖= 𝒳, ∑  𝑏
( )

∘ 𝑏
( )

∘  …  𝑏
( )

+  𝜖 where y is a scalar output. 

This reduces the number of parameters from O(IN) to the scale of O(NIR) while also 
producing reasonable reconstruction accuracy. For example, the previous MRI example 
parameters can be reduced to 389 = 5 + 128 × 3 for a rank-1 model, and to 1, 157 = 5 + 3 × 
128 × 3 for a rank-3 model.  
As discussed earlier in this chapter, Tucker decomposition is more flexible than CP and 
accurately captures the multi-way structural relationships in the core tensors. Tucker Tensor 
Regression defines the ℬ tensor in terms of its Tucker decomposition as:  

… … 𝑔 … 𝑏
( )

∘ 𝑏
( )

∘ … 𝑏
( )

  

such that 𝑦 =  ⟨𝒳, ℬ⟩ +  𝜖= 𝒳, ∑ … ∑ … 𝑔 … 𝑏
( )

∘ 𝑏
( )

∘ … 𝑏
( )

 +  𝜖 where 𝒢 ∈

ℝ × ×…×  with entries 𝑔 … ,…

,…,
.  The factor matrices are defined as 𝐵 ∈

ℝ ×  along different modes. This reduces the number of parameters from O(IN) to the 
scale of O(NIr + rN), which is higher than the CP regression parameters of O(NIR) but more 
parsimonious modelling of the input data when R≪ 𝑁. An example application presented in 
(Li, Zhou and Li, 2013) shows that for a tensorial dataset representing neuroimaging data as 
a 3D signal 𝒳 ∈ ℝ × ×  using a Tucker model with multilinear rank = (2, 2, 5), the 
number of parameters is 131, while using a 5-component CP regression model yields 230 
parameters. 
Other tensor regression algorithms are as follows: 
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1) Linear Tensor Regression Methods:  
 Hierarchical Tucker Tensor Regression reduce the  O(NR3 +NIR) 
 Higher-order partial least squares (HOPLS) model a tensor response from tensor 

predictors by extracting a small number of common latent variables that capture 
the maximum covariance, followed by a regression step against them. This is done 
using block Tucker decompositions of both the predictor and outcome tensors. This 
model is computational prohibitive for large tensors. Incremental higher-order 
partial least squares (IHOPLS) are suitable for infinite online streams of tensors by 
incrementally clustering the learned latent variables to summarise previous data in 
the core tensors and projection matrices.  

(a) (b)  
Figure 15: An illustration of high-order partial least squares (HOPLS) for predictor 𝒳 or order M=2 and M = 2, and 
outcome 𝒴 of L order and L=2, (a) shows HOPLS decomposes 𝒳 into a sum of rank-(1,H1, …, HM) Tucker blocks, 
and (b) shows HOPLS decomposes 𝒴 into a sum of rank-(1,K1, …, KL) Tucker blocks (Hou, 2017). 

 Generalised and Penalised Tensor Linear Regression.  
 Bayesian Tensor Linear Regression. 
 Online Local Gaussian process for tensor-variate regression (OLGP). 

2) Non-Linear Tensor Regression Models: 
 Incremental higher-order partial least squares (IHOPLS) 
 Recursive higher-order partial least squares (RHOPLS) conduct a consecutive 

blockwise calculation by merging the new data into the previous low-rank 
approximation of the model, storing only fewer factors than the complete 
observation.  

 Kernel-based multiblock tensor partial least squares (KMTPLS) predict dependent 
tensor blocks from a set of independent tensor blocks through the extraction of a 
small number of common and discriminative latent components by fusing the 
information from multiple tensorial data sources and unifies the single and 
multiblock tensor regression scenarios into one general model. 

 Kernel-based Tensor Partial Least Squares (KTPLS) 
 Kernel-based multiblock tensor partial least squares (KMTPLS) 
 Kernel-based higher-order linear ridge regression (KHOLRR) 
 Tensor Regression Networks: In deep learning (DL), Convolution Neural Networks 

(CNN) have been used in regression models.  Tensor Regression Layer can update 
the weight matrix in the last Fully Connected (FC) layer with regression coefficient 
tensor in low-rank Tucker decomposition format as shown in Figure 16.  
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Simple Linear Tensor Regression Methods are solved by approaches such as Rank 
Minimisation, Alternating Least Squares (ALS), Greedy Low Rank, and Projected Gradient 
Descent. Various Tensor Regression applications are found in the literature, such as Tensor 
on Vector Regression, Vector on Tensor Regression, Tensor on Tensor Regression, and 
Multiple Tensor-on-Tensor Regression. 

  
   

 

 
Figure 16: An illustration of tensor regression layer (TRL). 

A tensor regression is implemented in the Tensorly package as shown at 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tensor
_regression_layer.ipynb. Another implementation is provided by scikit_tt Python package 
for three different regression algorithms that can be found at 
https://github.com/PGelss/scikit_tt/blob/master/scikit_tt/data_driven/regression.py. Also, 
ttrecipes Python package provides a tensor regression and completion implementation that 
can be found at 
https://github.com/rballester/ttrecipes/blob/master/ttrecipes/core/completion.py. T3F 
implements tensor completion as well 
https://t3f.readthedocs.io/en/latest/tutorials/tensor_completion.html. T3F is built on top of 
Tensorflow providing Tensor Train decomposition for neural networks, with Riemannian 
optimization. This will be explained next chapter. There is a collection of tensor completion 
methods maintained in https://github.com/zhaoxile/reproducible-tensor-completion-state-
of-the-art . 
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4.5 Deep Learning Applications 

The tensor decomposition algorithms presented in this chapter and the previous chapter are 
data analysis algorithms that reveal complex relationships from the available data without 
adding any other machine learning algorithms. Tensor completion and regression discussed 
in the previous chapter can already do prediction and classification. Other machine learning 
algorithms that benefit from these concepts include support tensor machines, canonical 
correlation analysis, higher-order partial least squares), generalised eigenvalue 
decomposition, Riemannian optimisation, and the optimisation of deep neural networks. 
Tensor decomposition models are analogous to machine learning models. Some examples 
are as follows: 

 TT/MPS is analogous to Hidden Markov Models (HMM). 
 HT/TTNS is analogous to Deep Learning Neural Networks and Gaussian Mixture 

Model (GMM).  
 PEPS is analogous to Markov Random Field (MRF) and Conditional Random Field 

(CRF). 
 MERA is analogous to Wavelets and Deep Belief Networks (DBN). 
 ALS, DMRG/MALS Algorithms are analogous to  Forward-Backward Algorithms and 

Block Nonlinear Gauss-Seidel Methods (Cichocki et al., 2016, p. 1).   
 
For Artificial Neural Networks (ANN) algorithms, many building blocks contribute together 
to provide the non-parametric performance that requires no pre-defined assumptions about 
the function to approximate. ANN uses no rule-based programming, such as if statements or 
pre-defined equations used in classical machine learning (ML) algorithms, such as those 
used in chapter two methods. ML relied on developing new algorithms to address new 
problems, or suitable feature engineering to inject the algorithms with human knowledge 
about the dataset. Adding neurons and layers and choice of activation functions and error 
functions are the methods to capture the complexity of the data structures and their 
correlations. These functions can be linear or non-linear based on the problem requirement. 
The construction of the network is massively parallel by definition and enables the 
employment of supercomputers and very-large-scale-integrated (VLSI) technologies. ANN 
depends on the forward propagation (mapping) of the input from the input layer, to the 
estimated output on the output layer, through a computational graph (of any layers and 
neurons per layer) of dot products between weights and input connections (whether fully 
connected or convoluted). The estimated output is compared to the expected output to 
calculate the loss at the output layer. The loss is used to update the weights in backward 
propagation. The mapping from input to output is adaptive to dynamic changes in a batched 
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dataset or a changing environment in an online learning model and is subject to many 
hyperparameters, such as the learning rate, the number of epochs, learning algorithm, 
choice of activation and loss functions, validation process, convergence criteria and others.  
 
The human-brain-inspired model is empowered with the kernel methods from statistics 
introduced in chapter three, which will be further explored in chapter five. ANN is 
introduced in first theorised in the 1940s and implemented in the 1950s with various 
advancements through the initial decades, but with lousy performance due to the lack of 
large datasets and computing power. The SVM Kernel approaches were state-of-the-art 
during these decades. The big data scale datasets available now in the public domain and 
the exponential growth in computing power are the main reasons ANN picked up again in 
2006 to become state of the art in various ML tasks. The computing power that was 
available to supercomputers in the late 2010s is now available in individual desktops and 
laptops with multiple cores and GPUs or accessible through dense GPU systems in the cloud. 
This enabled deeper large networks to be established and trained on large datasets, with 
increased accuracy sometimes exceeding human performance, such as winning in the Go 
game against humans. For example, the 2017 Google neural machine translation achieved 
near human language translation using  100 ExaFLOPS supercomputers to train a network to 
estimate  8700 million meters. The 100 ExaFLOPs (Exascale = 1018 Floating Point Operation per 
second) supercomputer processing is equivalent to two years of processing on a dual CPU 
server. 
 
This section introduces ANN in general and how tensor decomposition methods can 
enhance their performance. Then tensorising a data set example will be presented. Chapter 
six will discuss other detailed applications. 

4.5.1 Introduction to NN: 
This section provides a very concise description of artificial neural networks to introduce 
how tensor decomposition methods can be used in these models. The simplest explanation 
of ANN, which is relatively more straightforward than many other machine learning 
algorithms,  is that it comprises six steps. 1) The NN takes input data and passes it through 
the neurons of the input layer by multiplying the data by a set of weights. 2) The received 
set of weights and biases are added in each neuron, and the neuron applies a simple non-
linear activation function to the result. 3) Then, the results from the neurons in one layer are 
stacked up to the following layers to capture more complex patterns/interactions. 4) the 
final layer is designed to produce the required predicted output of the machine learning 
task. 5) The predicted output is compared to the pre-labelled output to calculate the loss 
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and use the loss to backpropagate through the network, adjusting the weights. 6) The 
forward/backward process is repeated until convergence. The width (number of neurons) of 
each hidden layer (not the input and the output layers as these are specific to the input and 
output size required), and the depth of the NN, are learned from best practice papers and 
models specific to the complexity of the data structure and the learning objective.   
 
For more details on the theoretical and mathematical foundations of these models, books 
such as (Haykin, 2009) can be explored. For more programming exercises and essential 
building blocks of neural networks, books such as (Ekman, 2021) can be explored. The origin 
of the artificial neuron as a mathematical model is the biological neuron, as illustrated in 
Figure 17 (a), in which the body of the neuron is a node that performs two functions: it 
computes the sum of the weighted input signals, and it applies an output function to the 
sum. The neuron output/activation function is usually non-linear; examples are: 

 Converting the neuron’s output to a set of discrete values. 
 Limiting the range of the output values.  
 Normalising the range of output values.  

The input layers should have enough neurons for the number of input features. The output 
layer is based on the objective of the model. If it is classification, then the number of classes 
of the supervised prelabelled data set is the number of neurons in the output layer or other 
encoding methods to reduce the number of neurons. If it is a regression model, then one 
output neurone will contain the estimated predicted outcome continuous value. Adding 
more hidden layers between input and output, as illustrated in Figure 17 (b, c), enables 
more complex functions, not just simple monotonic ones, to be estimated. In computer 
vision, adding more hidden layers can extract more complex shapes, such as object 
detection. Recurrent connections that take the output of a neuron to the input of a neuron 
in the same layer (including itself) can be used to implement memory, as illustrated in Figure 
17 (d). ANN implement spatial filters for a dataset of pixels of an image, such that nearby 
pixels will be input to adjacent neurons. For example, a 16x16 image will require an input 
layer containing 256 neurons that will read the vectorised image data as intensities of grey 
shade or any other scalar representation. Spatial filters extract local features such as 
differences of intensity between adjacent pixels in an image, and this local property can be 
used for tasks like identifying edges in the image. More details about recurrence and 
convolution will follow. 
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Figure 17: (a) ANN: one neuron with two inputs, (b)Fully Connected Neural network for deep learning such that 
many hidden layers can be added, (c) Another example of a 3-layer ANN.(d) ANN with memory 

The weights/parameters/coefficients of the input features are learned/estimated using 
various approaches. The main classes of approaches are: 

• Supervised Learning: The output required for every set of inputs is pre-defined. The 
network is trained to estimate the weights by reducing a quantified error while 
learning from a prelabelled training dataset and generalising for unseen datasets by 
approximating a function of the inputs and the weights: 𝑦 =  𝑤 𝑥 +  𝑤 𝑥 +  … +

 𝑤 𝑥 , 
• Reinforcement Learning: A good output vs bad output is generally defined as using 

a utility function that generalises the objective without specific details. An 
environment of the problem specifies possible actions, rewards and states. The 
network is trained to maximise the utility function/reward and store the 
state/action/reward as samples or strategies to learn from in the future. For 
example, in a collision-avoidance navigation algorithm with an unknown map, in 
which the utility function is the shortest path, it learns by attempting possible 
strategies/actions (such as driving forward until an object is sensed ahead, then 
turning right). All sensed objects’ positions are recorded, and better shortest paths 
are calculated later. Then strategies are updated as the map change, object 
positions change, and utility function changes. 

• Unsupervised Learning: There is no specific output, but the inputs have patterns 
that can be estimated, such as in clustering.  

 



CHAPTER 4 

34 

The Hebbian rule updates the ANN connections’ weights between two neurons, such as 
increasing or decreasing them in proportion to the product of their activation: 

𝛥𝑤  =  𝛼𝑦 𝑥  
Such that neuron k and neuron j having connection weight wkj with Δwkj is the change of wkj, 
yk is the output of neuron k, xj is the input of neuron j, and α is a constant that defines the 
speed of learning. 
 
A perceptron is an artificial neuron with a weighted summation unit with inputs 
{𝑥 , 𝑥 , … , 𝑥 } and each 𝑥  is multiplied by a factor 𝑤  before summation. An additional 
input 𝑥  has the constant value 1 for setting a bias independent of the inputs. The output is 
obtained by applying a function f to the addition result. For binary classification, this output 
can be the sign of the summation indicating a + class or a – class:  

𝑦 = 𝑠𝑖𝑔𝑛 𝑤 𝑥 = ±1 

Perceptrons are the basic building blocks of deep learning, and the Hebbian learning rule is 
the basic rule applied in the stochastic gradient descent algorithm using partial derivatives 
for the high dimensional datasets: 𝑤 (𝑡 + 1) =  𝑤 (𝑡) + 𝜂( ) that is added or subtracted 

in the opposite direction of the gradient. The algorithm starts by initialising the weights 
arbitrability, such as 0.1. Then iteratively update the weights until convergence. The learning 
phase/iterations are terminated when the model converges. Convergence is defined as 
reaching 98% of the samples correctly classified or when the magnitudes of the corrections 
to the weights become small below a specified threshold. 
 
Multiple Layer Perceptrons draw a new decision line boundary by each perceptron 
that can be simply effective in multiclass classification, such as Multiclass Linear 
Discriminant Analysis (LDA), or causing the decision boundary to be non-linear such as the 
Quadratic Discriminant Analysis (QDA). Both LDA and QDA are parametric in that they 
measure the data against a pre-defined form (linear or quadratic) and similar distributions in 
each class. ANN does not require these assumptions. 
 
Computing partial derivative for multiple neurons for each dimension in the dataset, in 
multiple layers are computationally expensive. This is solved by using a backpropagation 
algorithm: 1) The forward pass, where we present a learning example to the network and 
compare the network output to the desired value (the ground truth). 2) The backward pass, 
where we compute the partial derivatives with respect to the weights. These derivatives are 
then used to adjust the weights to make the network output closer to the ground truth. The 
gradient descent algorithm tracing over a simple network is animated in https://developers-
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dot-devsite-v2-prod.appspot.com/machine-learning/crash-course/backprop-scroll. Instead 
of the non-differentiable sign function, the tanh or continuous sigmoid function is used.  
 

 
Figure 18: Simple two-layer network used to explain backpropagation. The last unit (dashed) is not a part of the 
network but represents the error function that compares the output to ground truth (Ekman, 2021). 

Figure 18 shows a two-layer ANN with 2 inputs and one output for a dataset with m 
samples. Each sample is applied to the network in each iteration to update the weights. In 
designing an ANN model, various building blocks need to be put together, such as: 

• The input aggregation functions/activation function in each neurone:  for example, 
for the ANN in Figure 18:  a Sigmoid function can be applied for hidden layer F 
neuron and a tanh for input layer G neurone, such that the predicted outcome can 
be computed as: 𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑤 + 𝑤 𝑡𝑎𝑛ℎ(𝑤 + 𝑤 𝑥 + 𝑤 𝑥 )) 

• The number of hidden layers required (and their type) and the number of neurons 
in each layer, and their connections. 

• The loss/Error Function: for example: Mean squared error 𝑀𝑆𝐸 = ∑ 𝑦( ) −

𝑦( )  
• The minimisation algorithm of the error function: for example the minimisation can 

be done analytically using calculus, such as computing a composite function by 
applying the chain rule in calculating the derivatives: 
𝐸𝑟𝑟𝑜𝑟 𝑤 ,  𝑤 ,  𝑤 ,  𝑤 𝑥 , 𝑤 𝑥 =  𝑒 ∘ 𝑓 ∘ 𝑧 ∘ 𝑔 ∘ 𝑧 , where 𝑧  is the 
activation function of neuron F, and 𝑧  is the activation function of neuron G. The 

iterative method is to use gradient descent class of algorithms to minimise an error 
until a threshold is met, or a number of iterations are performed. 

• Other parameters to fine-tune, such as the learning rate, the number of iterations, 
the convergence criteria, and the regularisation parameter to avoid overfitting. Each 
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implementation comes with default values, but learning a fine tuned values to a 
particular dataset or task can be achieved using search algorithms. 
 

A simple visualisation can be found in https://aegeorge42.github.io/. Another Multiclass 
classification ANN is shown in Figure 19. The network takes input from the MNIST dataset of 
handwritten digits containing 3D arrays of images, where the first dimension selects one of 
the 60,000 training images or 10,000 test images. The other two dimensions represent the 
28×28 pixel (flattened as 784 pixels) values (integers between 0 and 255). Each pixel is fed to 
one neurone in the input layer. A fully connected network (i.e. each neuron in one layer 
connects to all neurons in the next layer) with one hidden layer is constructed. One Hot 
encoding output layer, in which only one is activated to 1 as the estimated class/digit, and 
the remaining nine neurons/units are zeros (Ekman, 2021). 

 
Figure 19: Network for digit classification. A large number of neurons and connections have been omitted from 
the figure to make it less cluttered. In reality, each neuron in a layer is connected to all the neurons in the next 
layer (Ekman, 2021). 

 
Researchers have been proposing new NN models to handle different data types, machine 
learning tasks and complexity. Major neural networks architectures are convolutional neural 
networks (CNN) that are suitable to spatial datasets such as images, maps, or any n-D 
datasets where the position of an input is related to the positions of spatially related inputs. 
CNN complexity is much less than fully connected layers and all other remaining 
architectures. The remaining models are discussed in the order of increasing complexity. 
Recurrent Neural Networks (RNN) are suitable to sequential datasets, such as time series, 
sentences, audio and video files. There is also Recursive NN which sometimes uses the same 
acronym (RNN) and suitable to learning on graphs. There is also long/short term memory 
(LSTM), and their variant simplified Gated Recurrent Units (GRUs) that solves the vanishing 
gradient problems. There are also multi-component NNs such as encoder/decoder models, 
Generative Adversarial Neural Networks (GAN), among many others. In the following, some 
of the major architectures will be concisely introduced.  
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4.5.1.1 CNN: 
ANN input layer uses a neuron per input variable, such as a column in a dataset. This 
requires flattening a 2D image input, as seen in the MNIST example illustrated in Figure 19. 
The spatial information that connects a pixel to its eight neighbours spatially on a 2D grid is 
important to capture. This is what CNN is doing. CNN input layer uses a receptive field of the 
same size as the convolution filter size that divides an image input, for example (or any 
spatial data) using the kernel size, the stride (how much overlap in the image between the 
filter application), and requires padding in case of residuals. There is a 1D convolution to 
connect a data point to its previous and following data points, but images usually require 2D 
convolutions, and we also have 3D convolutions for video files with an extra frame/time 
dimension. A 2D convolution animation of different kernels can be found at 
https://setosa.io/ev/image-kernels/.   
 
The grid of neurons creates a feature map for the image, such that each layer has multiple 
output channels. Each neuron acts as a feature/pattern identifier (such as vertical line, 
horizontal, … etc.) and is activated if the particular feature is found in the location covered 
by that neuron’s receptive field. This provides translation invariance, i.e. identifying an 
object found in any special position in an image, by sharing the weights between all neurons 
in a single channel. The next chapter will discuss translation invariance from different 
perspectives and other forms of invariance. The sparse connection (each neuron works on 
its assigned receptive field only) leads to efficient computation costs. CNN layers are stacked 
such that each layer receives inputs from multiple input channels of the previous layer and 
produces multiple-output channels, such that a neuron in subsequent layers receives 
NxMxM inputs (+bias) for N output channels from the previous payer, and the kernel size of 
MxM. The resolution (number of neurons per channel) of the first convolutional layer is 
lower than the resolution of the image, and further CNN layers need to be of lower 
resolution than previous layers. For example, use a stride greater than 1, or use a max-
pooling layer to reduce the size of a layer by combining the output neurons within channels 
such as every 2×2 neurons and outputs the max value of these four neurons. Stacking CNN 
layers will recognise more complex objects than in the initial CNN layer where simple 
vertical/horizontal lines and other kernels are used. CNN layers compute fewer parameters 
than Fully connected layers. For example, assume an image 32×32×3 and a CNN layer, the 
weights to learn for the 3×3 kernel is 3*3*3+1 = 28, such that the third factor (3) represents 
the three channels in the previous layer. The +1 is the bias weight.  
Figure 20 illustrates the receptive fields in 2D convolution over images and the different 
kernel sizes and strides effect over the convolution through the image size. Figure 21 shows 
an example CNN network learning the different features by stacking the CNN layers, then 
flattening to merge the learned objects and produce a class prediction, and also shows the 
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receptive field as it grows deeper by stacking the CNN layers merging identified objects into 
more complex objects. A fully connected layer would have required 32*32*3+1 = 3,073 
weights to learn.  
 
There is an extensive history behind the choice of kernel sizes, layers and their types in 
many of the CNN models and classical computer vision concepts that can be reviewed from 
multiple other references. For online references: there is an article diving into the different 
types: https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-
of-convolutions-in-deep-learning-669281e58215. There is also an article explaining the 
math: http://d2l.ai/chapter_convolutional-neural-networks/channels.html (Ekman, 2021). 
 
There are also now many pre-trained models that can be used directly or can be tuned to a 
particular dataset or ML task that can benefit from the learned weights. Using the pre-
trained models, the initial layers are most general, and the later layers are more specific. 
The final layers can be changed as required to be suitable for a new ML task, by selecting 
which layers to keep and which to remove and add more layers as required, or feeze some 
layers’ weights from being updated during the fine-tuning. For example, VGGNet (16 layers) 
and GoogLeNet (22 layers) are close to human-level identification since 2014, then beaten 
by ResNet-152 consisting of 152 layers in 2015. Many other pre-trained models on various 
machine learning tasks can be fine-tuned as required, such as those posted in online 
repositories like TensorFlow Hub, or TensorFlow specific to Keras, Pytorch 
Hub, the NGC Catalog , GitHub and http://paperswithcode.com. There is also a low code/no-
code framework for using transfer learning in new applications provided by the NVIDIA TAO 
Toolkit. 

 
Figure 20: CNN Receiptive fields, kernels, strides, multiple channel outputs, sharing weights 

  

(b)  
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(c) 

Figure 21: (a) CNN Layers stacking identifying different features, then combining features to identify more 
complex objects, then flattening using Fully Connected Layer to produce the identified object type (b) The 
receptive field increases deeper into the network. Although the neurons in the topmost layer have a kernel size of 
only 2, their receptive fields are four pixels. Note the padding of the input layer. (c) How a neuron in the fully 
connected layer combines multiple features into an animal classification (Ekman, 2021). 

 

4.5.1.2 RNN: 
A Fully connected RNN layer connects the outputs from a dense layer to the inputs of that 
same layer, such that the number of inputs (weights) to a single neuron is now a function of 
both the size of the input vector and the number of neurons in the layer. This enables the 
weight to learn the interaction with previous values keeping the sequential data 
dependence such as time series and input value changes over time steps. Multiple recurrent 
layers can be stacked after each other to create a deep RNN, and a combination of recurrent 
layers, regular fully connected feedforward layers, and convolutional layers in the same 
network are also possible based on the machine learning task at hand. For example, for a 
regression ML task, one neuron is required in the output layer with Linear activation to 
produce the weighted sum of the predictive features. The regression accuracy measure in 
the output layer can be Mean Absolute Error to measure how far a predicted continuous 
value is from the ground truth. More details about the computation in RNN is illustrated in 
Figure 22. Bi-directional RNN learns the sequential dependence in both directions (look at 
future words) by having two RNN layers operating in parallel, but they receive the input data 
in different directions. Because of the successive weight multiplications over the time-steps, 
RNN suffer from the vanishing gradient problem (Ekman, 2021). 

(a) (b)  
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(c) (d)  
Figure 22 (a) Simple 4-neuron RNN layer with 3 inputs, reading back their output along with every new input 
applied to the network  (b) The activation function in Dense Layers is: y = tanh(Wx), while in RNN Layers, it is : h(t) 
= tanh(Wh(t−1) +Ux(t) + b), in which h(t−1) is the previous output and their Weights W, x(t) are current input with 
their Weights U, and the bias for each neuron to produce the new output h(t) (c) shows a network that learns the 
book sales prediction from two inputs: historical book sales and overall consumer spending, using dense RNN 4-
neurons input layer that read their own output along with the new iteration of new input (time step), such that 
they continuously update their learned weight (hidden states) with every time step, then pass on their output to a 
fully connected layer of 2 neurons to simplify the network, then to a final output layer of a single continuous 
variable using simple linear activation. (d) A flattened through time RNN (n+1 time-steps in each layer) that 
shows how the backpropagation through time (BPTT) algorithm takes weight sharing into account when training 
RNN layers. The figure shows weights connecting the layers and recurrent weights back to the same layer: wr1, 
wr2, . . ., wrm). The error from the output propagates backward both through the network (vertically) and through 
time (horizontally) (Ekman, 2021)..  

4.5.1.3 LSTM: 
Long Short-Term Memory (LSTM) is a more complex unit that acts as a drop-in replacement 
for a single neuron in a recurrent neural network (RNN). LSTM addresses the gradient 
vanishing and exploding problems from training both vertically and horizontally in Deep 
RNN over long time-steps, and enables capturing attention. If the LSTM is fed long 
paragraphs of text (or any sequential data), it remembers the key elements of that text or 
data, while RNN would be more affected by the most recent elements. For intuition on how 
LSTM works, watch the video in  https://www.youtube.com/watch?v=8HyCNIVRbSU. The 
LSTM cell has no less than five non-linear functions: Three are logistic sigmoid functions 
known as the gates in the unit, making it a gated unit. Two can be any regular activation 
functions, with popular choices being tanh and ReLU. It has four weighted sums, so the 
number of weights is four times as many as in a simple RNN. Multiplying a value by the 
output of a logistic sigmoid function results in the logistic sigmoid function acting as a gate: 
0 to close, and 1 to open and capture the value (X(t)). tanh activation function is popular 
because many RNNs are not as deep as feedforward networks, without severe vanishing 
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gradient problems. ReLU function can also be used as input and output activation functions 
in the LSTM. Multiple LSTM cells can be connected into a recurrent network layer,  just like a 
regular RNN, but each neuron has been replaced by the LSTM cell. This results in a network 
with two sets of states. We have the internal state (c) inside each LSTM cell, and we also 
have the state (h) in the global recurrent connections, just as in an RNN based on simple 
neurons. Figure 23 illustrates an LSTM cell, an LSTM layer, and their unrolling over time. The 
complexity of LSTM is 4-times the complexity of RNN (learning more parameters); Gated 
Recurrent Units (GRUs) simplify LSTM cells by not having an internal cell state. GRUs have 
only a single activation function, and the forget and remember gates are combined into a 
single update gate. LSTM and GRU are the most popular units used in RNNs, among other 
variations. 

(a) (b)  

(c)  
Figure 23: (a) LSTM Cell showing 5 activations functions and their input and output, (b) LSTM Layer showing 
connections of LSTM Cells, (c) LSTM unrolled in time 

4.5.1.4 Multi-component NNs: 
Having two networks in one model is useful, and the most popular architectures are the 
encoder/decoder and the Generative Adversarial Network (GAN). Sequence to Sequence 
(Seq2Seq) problems have input sequences to learn from how to produce an output 
sequence. The encoder network learns the hidden states’ representation of an input 
sequence, such as an embedding of the input space (a lower dimension generalised 
equivalent) to pass on to the decoder network to learn the corresponding output sequence 
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from samples of prelabelled data. The most common application is in machine language 
translation, such that the input length can be different from the output length, and word 
order and context vary from one language to another. Various stacking of models can create 
an encoder/decoder model, such as RNN encoder to RNN decoder, CNN encoder and CNN 
decoder, LSTMs and many combinations based on the objective of the network and 
type/structure of the input and the output. The Transformer model is an encoder/decoder 
model that learns input data representation in the encoder by using multi-head self-
attention layers and exposing all encoder states to the decoder to have different weights of 
the different states. This will be further discussed in chapter six. 
Generative models in Deep learning are similar to the generative models in machine 
learning; it is about learning the data distribution and how samples are generated in a class, 
rather than just being discriminative among the classes. Autoencoder networks generate 
latent vectors that describe the network input. Variational autoencoders learn the latent 
representation (distribution parameters of the latent space of the input) such that it can 
generate output that interpolates the given input, such as continuing sentences or drawing 
images. 
GANs apply some game theory models, using a generator and discriminator components as 
players. The generator learns the input data representation and generates new samples, 
labelled as fake or generated, but as close as possible to the genuine/real data. On the other 
side, the discriminator keeps learning how to identify the generated from real data as both 
continuously learn their weights. The model is called Adversarial because of the competition 
between the players to perfect their output, the generator aims to make the discriminator 
fail, and the discriminator aims to identify generated from real data correctly.   

4.5.2 Tensorisation Benefits: 
The tensor decomposition methods can be applied in any building block to reduce the 
number of parameters providing compression of the NN model and capturing multi-way 
structures that increase the model’s expressive power, increasing the accuracy and reducing 
overfitting. The data can already be collected in tensor forms, such as from multiple 
experiments or multimodal readings. A vector or matrix form dataset can also be tensorised 
to tree or chain structures to benefit from the tensorised algorithms. This will be explained 
in this section. 
 



CHAPTER 4 

43 

 
Figure 24: Tensorising Neural Networks (Novikov et al., 2015) 

 
In the first ANN building block, activation and loss functions choice can be tensorised, as 
shown in Figure 24. The standard weighted sum of dot products of input vectors with weight 
vectors and then aggregating them is suitable for vector and matrix form datasets. A 
tensorised activation function for a tree data structure can start from the node assigned to a 
neuron to recursively compute the weighted sum of its children with weight sharing 
between neurons to reduce the model complexity. This model, called a recursive neuron, is 
first modelled for binary trees and leads to a higher-order generalised n-ary tree using 
tensorised aggregation. CP decomposition or Tensor Train (TT) decomposition can further 
decompose the full format tensor aggregation. Chapter six will introduce more details about 
tensorised activation functions (Bacciu and Mandic, 2020). The loss function as well can use 
the decomposed tensor cores of the weights tensor. 
 
In the second ANN building block, the choice of the number of hidden layers and the 
number of neurons per layer can also benefit from the compressive nature of tensor 
decompositions algorithms. Tensor Networks can compress the whole Deep Neural Network 
(DNN) using a suitable tensor decomposition algorithm and then map back to the 
uncompressed form. Another approach is to update only the final fully connected layer (or 
specific layers of interest) of a model with a tensor decomposition layer, such as TT. Usually, 
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compressed models benefit from wider fewer layers (shallower networks). Chapter six will 
also introduce more details about layers’ compression (Bacciu and Mandic, 2020).   
 
Back to tensorising datasets, tensor network representations often allow for super-
compression of datasets as large as 1050 entries, down to the affordable levels of 107 or even 
less. The previous section shows an example of the MNIST dataset of handwritten digits 
containing images of 28×28 pixels (flattened as 784 pixels) values representing grey shade as 
integers between 0 and 255. Data in the tensor form can represent a coloured image with 
pixel values for red content, green content, and blue content as three different values in the 
(RGB) frames stacked into a 3rd-order tensor. Similarly, a video dataset can include the 3rd-
order coloured image frames extended with the time dimension in a 4th-order tensor. This 
new arrangement of the data will require an alignment of the data slicing into the different 
epochs. These blocks of tensorised data need to represent the multi-way structures in the 
dataset identifying latent variables so that the learning iterations can reduce the error.  
 
Domain-transform methods can achieve this representation. The values stored in a given 
index vector capture interaction between the dimensions/modes. This means symmetric or 
partially symmetric tensors might be sufficient to capture the inter-mode interactions, 
ignoring the values in a permuted index (same modes in a different order) in which the 
value might be redundant. For example, in the EEG dataset, we have F frequency measures 
collected over T time samples from S channels, forming a 3rd-order tensor. Transforming the 
domain of this 3rd-order tensor to get the time-frequency decomposition can be achieved 
using a short-time Fourier transform (STFT) that uses a fixed window size or wavelet 
transform (WT) that uses variable window sizes inversely proportional to the frequency 
resolution (high or low). Other transformations can represent data at multi-scale and 
orientation levels, such as the Gabor, contourlet, or pyramid steerable transformations. 
More details about change of basis and representation learning will discussed in next 
chapter. 
 
Furthermore, datasets can contain statistically independent latent variables. Hence, the 
dataset can be represented by higher-order statistics (cumulants) or by partial derivatives of 
the observations’ Generalised Characteristic Functions (GCF). Using a suitable tensor format 
such as the lower rank core tensors presented in this chapter enables all the above-
discussed transformations and others while keeping the number of parameters smaller. The 
monograph in (Cichocki et al., 2017, p. 2) provides detailed discussions with examples of 
various forms of tensorisation that prepare a dataset for a compressed tensorised deep 
neural network model. This section will present one example in detail. 
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Chapter one presents tensor vectorisation and matricisation functions and the reverse 
operation of tensorising a vector or a matrix. The tensorisation depends on considering the 
vector or matrix as a hierarchical object of data blocks. The segmentation is a process of 
identifying the index ranges of a block, and then each block range of values becomes the 
size of the dimension/mode in the resulting tensor. For example, a vector of four elements 
can be thought of as containing two blocks each of two elements. This vector can be 
matricised such that: 
M(i,j) = v(i*cols+j), such that M(0,0) = v(0), M(0,1)=v(1), M(1, 0) = v(2), M(1, 1)=v(3). 
M matrix is considered a folding of vector v. A higher-order folding yielding tensor 𝒳 ∈

ℝ  ×  ×… ×   is considered a folding of a vector v of length 𝐼 × 𝐼  × … ×  𝐼 , if 
𝒳(𝑖 , 𝑖 , . . . , 𝑖 )  =  𝑣(𝑖) , for 0 ≤  𝑖 ≤ 𝐼 for  1 ≤  𝑛 ≤ 𝑁, and for 0 ≤ 𝑖 ≤ (𝐼 ×  𝐼  × … ×

 𝐼 ), 𝑖 = 1 + ∑ (𝑖 − 1) ∏ 𝐼  as a linear index of (𝑖 , 𝑖 , . . . , 𝑖 ). 
 
Data or signals come in many structured forms that can be assumed in the tensorisation 
details. For example, it is observed that a higher-order folding (quantisation) of a vector of 
length qN (𝑞 =  2, 3, …), sampled from an exponential function yk = azk-1, yields an Nth-order 
tensor of rank 1. Many functions are formed from products and/or sums of trigonometric, 
polynomial and rational functions. These can be quantised as shown above to yield 
(approximate) low-rank tensor train (TT) network formats. These two assumptions can be 
used in Blind Source Separation (BSS) problem when given a mixture y(t) and it is assumed 
to be composed of J sources as 𝑦(𝑡) =  𝑎 𝑥 (𝑡) +   𝑎 𝑥 (𝑡) + ⋯ +   𝑎 𝑥 (𝑡)  +  𝑛(𝑡) , 
where 𝑛(𝑡) is added Gaussian noise. Extracting the sources by estimating the mixing matrix 
A, can be done by assuming a higher-order folding 𝒳 of the sources with low-rank 
representations using one of the known tensor decomposition algorithms, such as CP, 
Tucker, TT, or TR. The multilinearity of this tensorisation keeps the relation between the 
tensorised mixture 𝒴 and the tensorised sources 𝒳 as 𝒴 =  𝑎 𝒳 +   𝑎 𝒳 + ⋯ +

  𝑎 𝒳  +  𝒩, where 𝒩 is the tensorised noise. Decomposing 𝒴 into any TN format, the 
separate decomposed components will represent the sources up to a scaling ambiguity.  
 
For example, if the mixture signal length was L = 2d J2, and the sources are contributing to 
the mixture equally:  𝑎 ‖𝒳 ‖ =   𝑎 ‖𝒳 ‖ = ⋯ =   𝑎 𝒳 , we can tensorise the mixture 𝒴 
to the dth-order of size 2𝑅 × 2 × … × 2 × 2𝑅. It is observed that An Nth-order tensor of size 
𝐼 ×  𝐼  × … × 𝐼 , where 𝐼 ≥ 2, which is reshaped from a sinusoid signal, can be 
represented by a multilinear rank-(2,2, … , 2) tensor. The modulated variants of the 
Harmonic sinusoidal signals, such as the exponentially decaying signals exp(𝛾t), are 
fundamental in many practical applications. This tensorisation enables the tensors of 𝒳 (𝑡) 
to be represented by tensors in the TT format of rank-(2,2, … , 2). In order to separate the J 
signals  𝒳 (𝑡) from the mixture 𝒴 (t), the process requires fitting 𝒳  sequentially to the 
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residual 𝒴 = 𝒴 − ∑ 𝒳  calculated by the difference between the data tensor 𝒴 and its 
approximation by the other TT-tensors 𝒳 , where 𝑠 ≠ 𝑛. Then, a minimisation step of the 
reconstructed mixtures from argmin

𝒳
‖𝒴 − 𝒳 ‖  for n=1, …, J. In this setup, the signal 

length L determines the quality of the extraction of the sources and the d value to use in the 
tensorisation. Other tensorisation methods are suitable for short-length signals, such as 
multi-way Toeplitz or Hankel tensors (Cichocki et al., 2017, p. 2). 
An example to BSS problem using tensor decomposition is presented in (Böttcher et al., 
2018). The authors built a Python Package “Decompose” that generalises the PCA, ICA, and 
NMF solutions to the BSS problem. These methods are built on statistical assumptions that 
might be found in a dataset or might not be found. Each of them would produce different 
sources when applied on the same dataset. Expert knowledge is usually needed to identify 
the correct statistical assumptions of a given dataset in an application domain. The authors 
built a probabilistic BSS model that estimates the priors of every source, can extend to new 
prior distributions, scale well to large datasets, assuming each source has a different sparsity 
level, and efficiently estimates the posterior adopted to the dataset. Their code is published 
in https://github.com/bethgelab/decompose.  
 
The python notebook ch4.ipynb shows various NN architectures and links to sample 
tensorial CNN , RNN and others.  
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