
 

 

Chapter 5: Representation Theory 

This chapter discusses when input or output data has a structure that a model can benefit 
from learning its representation using algebraic theories. Representation learning can be 
unsupervised or semi-supervised to guide supervised learning algorithms and increase their 
accuracy. The chapter starts with theoretical discussions of abstract algebra foundations 
required, then how group representation theory is applied in traditional machine learning 
and neural networks and then develops to its role in tensor products and their 
decompositions.  

Chapter one introduced machine learning (ML) algorithms using the linear regression 
example that estimates the weights of an equation that maps the target variable that could 
be given in a dataset if prelabelled (supervised) or a state or cluster membership 
(unsupervised) to the other independent variables of the dataset. This equation, f(x), is 
called mapping or transformation. Chapter two introduced the importance of dimensionality 
reduction using projections to orthogonal spaces or embedding or manifold learning. 
Chapters three and four introduced how this can be done for the multi-way structures using 
tensor decompositions methods. This chapter introduces representation discovery or 
learning, which is also a dimensionality reduction and regularisation approach achieved by a 
change of coordinate systems or basis functions. Dimensionality reduction or representation 
learning are considered data pre-processing steps to perform before using an ML algorithm. 
Parametric ML algorithms estimate the input/output mapping function using pre-defined 
parameters by assuming a particular representation or data distribution, such as fitting a 
linear or non-linear equation of a given polynomial degree. This is usually attempted using 
trial and error until a good measure of fitness is achieved. Data visualisation can also help to 
estimate the appropriate representation manually. The non-parametric machine learning 
algorithms introduced in the SVM Kernel trick in chapter two attempt to learn the 
representation from the data using kernel methods. This learning will add computational 
overhead due to permutations having n! elements. However, symmetries that are often 
found in datasets will reduce the computational overhead. A symmetrisation step can be 
included as a dimensionality reduction or compression technique with an acceptable loss 
and work as regularisation. Furthermore, the variables in x can be members of one or more 
groups in the dataset. These groups can be reducible to subgroups and have properties that 
make learning this equation's coefficients easier. Algebraic group theory, Lie theory and 
representation theory (often mean the same thing) and their properties capture symmetries 
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and are often used in the various machine learning algorithms. This will facilitate our 
understanding and ability to apply and advance these algorithms as required.  

The first section introduces abstract algebra as a recent player in machine learning 
algorithms to achieve modular programming that benefits from symmetries and group 
decomposition representation, along with python examples. Computer scientists are already 
familiar with object-oriented inheritance and polymorphism properties. These concepts 
enable modular programming such that extra functionality is added or existing functionality 
is eliminated during inheritance from superstructures to substructures. This enables 
polymorphic methods that operate differently based on the structure of their parameters. 
This is how algebraic objects are related in a tree structure of inheritance and polymorphism 
with different operations and properties. 

Then, the second section progresses into Harmonic analysis using Fourier Transforms and 
Wavelet analysis that discovers the representation basis of a given dataset. The Laplace 
operator will be further explained for its role in revealing symmetries. Then a section on 
learning in the Hilbert space using kernel methods will discuss how this can also be 
performed on group representations of datasets.  A section on invariance summarises how 
all the above methods are actually learning the new invariant subspace basis representing a 
dataset input or output spaces. A final section on applications of these approaches will 
discuss various representation learning approaches, in which one approach uses tensor 
decomposition methods presented in chapters three and four. 

The last chapter presented the BSS problem and how it is solved using tensorisation to a 
higher-order object from which the symmetries and the unique properties of the sinusoidal 
signals are used to solve the separation. The topics of this chapter will explain another 
geometric definition of tensors as positive definite symmetric matrices mentioned in 
chapter one. To understand symmetries, we need to learn abstract algebra. Abstract 
algebra, as its name suggests, abstracts not only Algebra but also many different tools used 
in other math topics such as geometry, number theory and topology, such that the same 
abstract tools can be used in all of them. In algebra, we learned how to solve a system of 
equations, whether linear, quadratic, cubic or even quartic (4th order) equations. For higher 
degree equations, n>4, we need to understand groups and their role in modular arithmetic 
and in understanding non-Euclidean geometries. Groups are fundamental objects to many 
abstract objects that build upon them, such as rings, fields, vector spaces and modules. We 
covered fields and vector spaces in the previous chapters and will focus on the remaining 
concepts. The main aim is to understand how machine learning algorithms map datasets 
such as collections of images, problem states in Reinforcement Learning (RL), or words in 
natural language processing (NLP), into an implicit vector space and how mappings to 
output space can be achieved using algebraic methods. 

This chapter, again, is full of mathematical definitions and equations. Once again, the aim is 
not to discuss the derivations, proofs, or all properties. The aim is to familiarise the reader 
with the wealth of mappings between groups, subgroups, symmetries, reducing groups, 
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composing groups, rings, and modules. Machine learning algorithms employ these concepts 
by taking advantage of equivalence between computationally expensive structures and their 
equivalent or approximate representations reducing the computational overload. The 
material covered in this chapter is summarised from (Gilmore, 2005), (Risi Kondor, 2008), 
(Milne, 2021), (Mahadevan, 2008), and many examples from the Socratica YouTube channel. 
This chapter cannot be a source to study these concepts thoroughly, but it can serve as an 
appetiser to expand the reader's horizon and create a unified ML context of these topics. 

5.1 Group and Representation Theory 

Group theory is a branch of abstract algebra that studies groups satisfying certain axioms, 
such as the representation theory of symmetric groups.  

5.1.1 Group Theory Main Structures 

5.1.1.1 Sets 

A set is a collection of objects that do not necessarily have any additional structure or 
properties. 

5.1.1.2 Group 

A group G is defined as a set of elements such as 𝑥, 𝑦, with an operation 𝐺 × 𝐺 → 𝐺 
producing results as 𝑥𝑦 or 𝑥. 𝑦 as the product of the elements. Multiplication × and addition 
+ are the most used group operations since division can be rewritten as multiplication with 
reciprocals, and subtraction can be written as addition with negatives. The operation can be 
generalised as * for abstractness. A finite group is described by its order (number of 
elements or cardinality) as |𝐺| and can be continuous or discrete. The axioms to be satisfied 
include closure such that the product 𝑥𝑦 ∈ 𝐺 for a group with multiplication operation, or 
𝑥 + 𝑦 ∈ 𝐺 for a group with addition operation, and generalised/abstracted to 𝑥 ∗ 𝑦 ∈ 𝐺; 
associativity such that for any 𝑥, 𝑦, 𝑧 ∈ 𝐺, also (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) ∈ 𝐺 in multiplication 
operation or (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ∈ 𝐺 in addition operation, and abstracted to 
(𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧) ∈ 𝐺; identity element such that 𝑒𝑥 = 𝑥𝑒 = 𝑥 ∈ 𝐺, which is 1 in 
multiplication operation and 0 for the addition operation, and abstracted as 𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 =

𝑥 ∈ 𝐺; and inverse such that 𝑥𝑥ିଵ = 𝑒 for multiplication operation such that the reciprocal 
is the inverse or 𝑥 + (−𝑥) = 𝑒 for addition operations such that the negative value is the 
inverse and abstracted as 𝑥 ∗ (𝑥ିଵ) = 𝑒. Commutativity as in (𝑥 ∗ 𝑦) = (𝑦 ∗ 𝑥) property if 
existing in a group, then it is an Abelian group. Symmetric groups are not Abelian except 
when their order n is less than or equal to two. A group can be defined by listing its 
elements and multiplication table or a table showing other operations called Cayley table.  
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For example, The Integer numbers group ℤ is an infinite group closed under the addition 
operation to maintain all the above axioms. Given 𝑥, 𝑦, 𝑧 ∈ ℤ , closure: when x=2, y=3, and 
z=4, then x+y=2+3=5 ∈ ℤ; associativity (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) is (2 + 3) + 4 = 2 +

(3 + 4) = 9 ∈ ℤ, identity element 0, such that 𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 = 𝑥 ∈ 𝐺 is 0 + 2 = 2 + 0 =

2 ∈ 𝐺; and inverse 𝑥 + (−𝑥) = 𝑒 is 2 + (−2) = 0. We can solve an equation using these 
axioms, such as: 

x+3=5    Integer Under addition 
(x+3)+(-3) = 5+(-3)  Inverse 
(x+3)+(-3) = 2   Closed Under addition 
x+(3+(-3)) = 2   Associativity 
x+0=2    Identity 
x=2 
Other examples for different orders are shown in the following table, starting from order 
one, the trivial group, which would contain the identity element only. For the different 
orders, the multiplication/Cayley table starting from the identity element is shown in the 
table: 

Order 1 Order 2 ≅ ℤ

ଶℤ
(integers mod 

2) 

Order 3, which is the only 

one ≅ ℤ

ଷℤ
(integers mod 3), 

isomorphic groups 

 e 

e e 
 

 e a 

e e a 

a a e 
 

 e a b 

e e a b 

a a b e 

b b e a 
 

 

There are only four groups of order four; three of them are equivalent, which means only 
two order four groups up to isomorphism both are Abelian of prime power order: 1) Cyclic 

group of order four, 2) Klein Viergruppe four group, the product of the quotient group ℤ

ଶℤ
 

with itself (the group of order two explained above multiplied with itself). 

The cyclic group of order 4, using additive 
notation 

 0 

(identit
y) 

1 

(generato
r) 

2 3 

(generat
or 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 
 

The cyclic group of order 4, using multiplication 
notation 

 e 
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(generato
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x3 
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e e x x
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x x x2 x
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e 

Klein Viergruppe V as 
isomorphic to: ℤ

ଶℤ
×

ℤ

ଶℤ
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b b c e a 
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x
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x2 x3 e x 

x
3 

x3 e x X2 

 

  

Notice that in all the previous Cayley tables, every row and every column should contain the 
identity element once because of the existence of the inverse of every element. No 
duplicate element in any row or column because if there is any, then there is an equivalence 
(redundancy) between the group elements. If the table is symmetric (if you flip it around the 
diagonal, you get the same table), then the group is Abelian (commutative) such that 
a*b=b*a. 

5.1.1.3 Rings 

A ring extends the group by being a set of elements defined with both operations +/− and 
×, such that the + has inverses, which are the negative numbers such that the subtraction 
operation is also included, but the × has no inverses as the reciprocals are not included in 
the ring. Rings are commutative under +, which is Abelian under addition, and associative 
under ×, such that 𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐. Rings’ distributive property links both 
addition and multiplication operations: 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐. Elements can be 
generalised to polynomials and matrices. If a ring is commutative under multiplication, it is a 
commutative ring. If G has identity 1, it is called a “ring with identity” because rings naturally 
have zero additive identity. A Unit in a ring R is the element 𝑥 ∈  𝑅 that has a multiplicative 
inverse 𝑥ିଵ  ∈  𝑅, such that 𝑥. 𝑥ିଵ = 1. All units in a ring form the group of units 𝑅× which 
is a group under multiplication. In ℤ ring, the group of Units is ℤ× = {1, −1} since all other 

multiplicative inverses will yield a fraction. In ℤ

ଵଶℤ
 ring, the group of Units is ቀ ℤ

௡ℤ
ቁ

×
=

{1, 5, 7, 11}; this can be verified from the Cayley table of the ring. Any integer ℤ multiplied 
by the units’ set yields associates, such as for ℤ× , the associates are {2, -2}, {3, -3} and so 
forth. Associates are important in identifying equivalent factorisations and ignoring unit 
factors. The fundamental theorem of Arithmetic states that every integer n except 0, 1, and 
-1, has a prime factorisation that is unique up to order and associates. For example, a ring 

𝑅 = ቄቂ
𝑎 𝑏
𝑐 𝑑

ቃ ቚ𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤቅ has a unit matrix ቂ2 7
1 4

ቃ,  to which the multiplicative inverse 

(the matrix inverse) = ቂ 4 −7
−1 2

ቃ ∈ ℤ, and identity matrix ቂ1 0
0 1

ቃ. Not all matrices in 𝑅 have 

multiplicative inverses and the group of units 𝑅×= matrices A with determinant (A)= ±1. 

An example of infinite rings is the group of Integer numbers ℤ under +, −,×, such that 
addition/subtraction/multiplication of two integers yields an integer, but division yields a 
fraction, which is not an element of ℤ. Another example is the infinite group of polynomials 
𝑓(𝑥) = 𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + ⋯ + 𝑎ଶ𝑥ଶ + 𝑎ଵ𝑥 + 𝑎଴ such that 
addition/subtraction/multiplication of two polynomials yield a polynomial, but division 
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yields a non-polynomial. The polynomials ring is a commutative ring with identity. 

Coefficients can be integers, complex numbers, ℤ

௡ℤ
, matrices, or any ring. Rings can be used 

in composing rings, such as a ring of polynomials in which the coefficients are rings. A ring of 
matrices is not commutative because a change in the order in matrix multiplication yield 
different results.   

The quotient group example of ℤ

ଶℤ
 take the group/ring ℤ and divide it by the normal 

subgroup/ideal (both will be defined below) 2ℤ yielding finite rings. This class of finite rings 

containing  ℤ

௡ℤ
 groups, except when n is prime p, then ℤ

௣ℤ
 is a field, which is also a ring. Every 

field is a ring, but not every ring is a field as shown in Figure 1. 

 

Figure 1: Groups, Rings, Fields: 

5.1.1.4 Fields 

Fields are defined in chapter one and redefined in chapter three. Fields 𝔽 extend the 
abstract algebra objects as elements on which the four algebraic operations are defined, 
+, −,×,÷. For abstract algebra generalisation, these operations are redefined as addition, 
additive inverses, multiplication, and multiplicative inverses. For example, real numbers of 
fractions ℝ, integer numbers ℤ, natural numbers ℕ, rational numbers of decimals ℚ, 

complex numbers ℂ, and prime fields ℤ

௣ℤ
 such as ℤ

ଶℤ
, ℤ

ହℤ
, …, etc., are illustrated in Figure 2, 

such that (ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ 𝔽), and (ℂ ⊂ 𝔽).  

 

Figure 2:Fields of Numbers as sets/groups/rings, from https://www.mathsisfun.com/sets/number-types.html 

Fields 
Rings 
with 1 

Groups 

Rings 

Commutative 
Rings 
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These are all infinite fields because they have all the properties of rings with identity, 
commutative under multiplication, and include multiplicative inverses. Fields are defined as 
two groups combined: field 𝔽 under addition 〈𝔽, +〉 as a commutative group, and Field 𝔽 
under multiplication 〈𝔽×,∙〉 as a commutative group, linking addition and multiplication by 
the distributive property. Infinite fields can be extended, forming other fields. The integer 
group ℤ can be extended with multiplicative inverses including fractions to become the field 
ℚ;  extend rational numbers field ℚ with numbers in the form of √𝑥. If we extend ℝ with an 
imaginary number to solve equations such as i2+1=0 that needs i2 to be = -1, and hence i= 
√−1, then this defines the complex numbers field ℂ as a 2D numbering system. as ℂ = ℝ +

𝑖ଵℝ, 𝑖ଵ
ଶ = −1, which is the largest field that can not be extended, and it is algebraically 

closed, such as any polynomial equation in ℂ can be solved in ℂ. ℂ can be extended by 
variables such as ℂ(𝑥) or multivariable such as ℂ(𝑥ଵ, … ,  𝑥௡). Just as much as any vector in 
ℝ௡ is a linear combination of n basis vector ei as v=v1e1+ …+ vnen,  also any  ℂ vector is a 
linear combination of bases, except that each vi, has 2 components as vi=vi0+vi1i. This means 
2N-dimensions are needed to represent a N-dimension ℂ in ℝ. A change of bases in ℝ using 
an invertible transformation matrix A is applied as 𝑒௝ = 𝐴௝

௜𝑒௜  and the inverse mapping is as 

𝑒௜ = ൫𝐴௝
௜൯

ିଵ
𝑒௝ = 𝐴௜

௝
𝑒௝ . The same change of basis rules applies to ℂ. 

We can construct the quaternions Q from the complex numbers ℂ as 𝑄 = ℂ + 𝑖ଶℂ,  such 
that 𝑖ଶ

ଶ = −1, 𝑖ଵ𝑖ଶ = −𝑖ଶ𝑖ଵ, this makes the quaternions a 4D numbering system that can be 
expressed as 𝑄 =  ℝ + 𝑖ℝ + 𝑗ℝ + 𝑘ℝ such that i2=j2=k2=ijk=-1, and can be represented as 
an ordered pair binary form of real and vector parts 𝑄 = [𝑠 ∈ ℝ, 𝑣 ∈ ℝଷ]. The multiplication 
operation is a non-commutative quaternion product with multiplication identity one, 
defined similar to the cross product of unit cartesian vectors as follows: 

 1 i j k 

1 1 i j k 

i i -1 k -j 

j j -k -1 i 

k k j -i -1 

 

A Cayley field can be constructed from quaternions, similarily the 3D rotation groups as 
explained below. Similar modular construction applies such as quaternions can have a 
change of basis and be represented as Complex numbers ℂ using 2N dimensions and real ℝ 
using 4N dimensions. Further expansions such as the Octonions are possible, but they are 
non-associative and hence not a Field. With every expansion, some properties are lost. 
Convergent sequences Limits can also be used to limit ℚ to ℝ, for example. Finite fields are 
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Galois fields containing a finite number of elements, such as the integer mod p where p is a 
prime number.  

5.1.1.5 Vector Spaces 

Vector spaces are defined in chapter one as well. They have the properties of allowing 
addition and scaling operations and commutative, including the zero vector, identity 
element, inverses, and associative. These properties generalise vector spaces as 
commutative groups under addition operation with the additional operation of scaling with 
its distributive property. Even scalars can be generalised abstractly from any given Field, not 
necessarily real numbers. This redefines the vector space to a commutative/Abelian group V 
containing vectors v as elements, under + operation, that has a field of scalars F, if 𝑣 ∈

𝑉, 𝑓 ∈ 𝐹 ⇒ 𝑓. 𝑣 ∈ 𝑉 such that 𝑓. 𝑣 is a scaled vector with distributive property 
𝑓. (𝑣ଵ + 𝑣ଶ) = 𝑓. 𝑣ଵ + 𝑓. 𝑣ଶ , and (𝑓ଵ + 𝑓ଶ). 𝑣 = 𝑓ଵ. 𝑣 + 𝑓ଶ. 𝑣, associative property 
𝑓ଵ. (𝑓ଶ. 𝑣) = (𝑓ଵ × 𝑓ଶ). 𝑣 and scaling identity 1. For example, a polynomial of degree 5 or less 
is a vector space V such that if adding two polynomials, always keep or reduce the 
polynomial degree by cancellations, but never increase the degree. Polynomials can be 
scaled, keeping the degree. Another example of a vector space is the space of continuous 
functions. Vector spaces are of finite dimensions determined by n, with basis vectors 
{𝑒ଵ, … , 𝑒௡}, such that Vector components are defined as 𝑉 = 𝑓ଵ𝑒ଵ + … + 𝑓௡𝑒௡such that 𝑓௜ ∈ 
field of scalars 𝐹, which makes V isomorphic to Fn: 𝑉 ≅ 𝐹௡. 

5.1.1.6 Modules 

The vector spaces are generalised to Modules, such that scalars are not Fields but rings, and 
the elements of a Module do not need to be vectors. This defines Module M to be an 
Abelian group of m elements, with Ring R scalars of r elements, such that r.m is a scaled 
element with distributive property 𝑟. (𝑚ଵ + 𝑚ଶ) = 𝑟. 𝑚ଵ + 𝑟. 𝑚ଶ , and (𝑟ଵ + 𝑟ଶ). 𝑚 =

𝑟ଵ. 𝑚 + 𝑟ଶ. 𝑚, associative property 𝑟ଵ. (𝑟ଶ. 𝑚) = (𝑟ଵ. 𝑟ଶ). 𝑚 and scaling identity 1. For 
example, M is any Abelian group of elements a, with R = ℤ scalars, on which the scalar 
multiplication is defined r.a ∈ 𝑀. Every Abelian group is a ℤ-module. Another example is a 

Module M of elements as 2x3 matrices = ቄቂ
𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ
ቃ |𝑚௜௝ ∈ ℤቅ , with R = ℤ scalars, 

and scalar multiplication: 

𝑟. ቂ
𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ
ቃ = ቂ

𝑟. 𝑚ଵଵ 𝑟. 𝑚ଵଶ 𝑟. 𝑚ଵଷ

𝑟. 𝑚ଶଵ 𝑟. 𝑚ଶଶ 𝑟. 𝑚ଶଷ
ቃ 

A third example shows that Modules with vector elements can do more than vector spaces, 

is when the scalars are not defined in ℤ but as a Ring of matrix 𝑅 = ൝൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ |𝑎௜௝ ∈

ℝൡ  which are not sure to be invertible and not commutative but have an identity matrix 
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3x3. When M= ℝଷ = {(𝑥, 𝑦, 𝑧)|𝑥, 𝑦, 𝑧 ∈ ℝ} under +, the scalar multiplication r.m = matrix 
multiplication. Modules can be isomorphic to n copies of Ring scalars R similar to vector 
spaces, which is called finitely generated. Another finitely generated module that is not n 

copied of R, is ℤ × ቀ
ℤ

ଶℤ
ቁ × 4ℤ. In addition, Modules can be infinitely generated, such as the 

free Modules. This complexity of Modules enables the decomposition of scalar Rings that 
we can not do with Fields as scalars in Vector spaces. 

5.1.1.7 Algebras 

A linear algebra A consists of a collection of vectors  𝑣ଵ, 𝑣ଶ … , ∈  𝑉, a collection of fields 
𝑓ଵ, 𝑓ଶ … , ∈  𝔽, a field, and three kinds of operations (α) vector addition, (β) scalar 
multiplication, and (γ) vector multiplication. For the vector space collection,  closure, 
associativity, identity, inverse, and commutativity hold. Other algebras can be defined based 
on which properties they hold. For example, an algebra of a set of real n × n matrices forms 
a real n2-dimensional vector space under matrix addition and scalar multiplication. An 
associative algebra adds matrix multiplication to the previous algebra. The first algebra 
example has a subspace of nxn symmetric matrices (𝑆௜௝)் = 𝑆௝௜ = +𝑆௜௝. Symmetric matrices 
matrix multiplication does not yield symmetric matrices output. Symmetrisation of two 
symmetric matrices, S, and T, is defined as: [𝑆, 𝑇]ା = 𝑆𝑇 + 𝑇𝑆. The anti-commutation 
relation is [𝑆, α𝑇ଵ + βTଶ]ା = α[𝑆, 𝑇ଵ]ା + β[𝑆, 𝑇ଶ]ା. A symmetrisation operation and anti-
commutation form an algebra from symmetric matrices. An Anti-symmetrisation operation 
of two antisymmetric matrices A, and B, such that 𝐴் = −𝐴,  𝐴௜௝ = − 𝐴௝௜ ,  is defined as: : 
[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. The commutation property is defined as [𝐴, βBଵ + γBଶ] = β[𝐴, 𝐵ଵ] +

γ[𝐴, 𝐵ଶ]. The antisymmetric multiplication and the commutation relations form an algebra 
called Lie Algebra from antisymmetric matrices, provided that the combinatorial 
antisymmetrisation operation obeys ൣ𝐴, [𝐵, 𝐶]൧ = [ [𝐴, 𝐵], 𝐶] − ൣ𝐵, [𝐴, 𝐶]൧, which identifies 
the Jacobi identity: ൣ𝐴, [𝐵, 𝐶]൧ + ൣ𝐶, [𝐴, 𝐵]൧ + ൣ𝐵, [𝐶, 𝐴]൧ = 0. If an Algebra has a norm and a 
division, it is called a normed division algebra, in which only four exist, the real numbers ℝ, 
the complex numbers ℂ, the quaternions Q, and the octonions O. 

5.1.2 Main Concepts & Definitions 

The algebraic structures (group, field, and others mentioned previously) can be mapped into 
another similar algebraic structure, keeping some or all of its structural properties. A 
realisation is a mapping into an algebraic structure that can be written down concretely and 
described analytically. A representation is a mapping into a set of matrices. 

The following describes the main concepts and definitions from which many algorithms 
benefit, such as the conjugate gradient (CG)  method (https://scipy-
lectures.org/advanced/mathematical_optimization/) used in applying the tensor completion 
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example presented at the end of chapter three. Many algorithms employ these equivalent 
decompositions to achieve faster computation.  

Let us start by defining conjugacy. Two group elements, x and y, are said to be conjugate, 
which means equivalent if there is a 𝑡 ∈ 𝐺 such that 𝑡ିଵ𝑥𝑡 = 𝑦. This can partition group G 
into conjugacy classes. For any two x, and y conjugate vectors, any vector parallel to x and y, 
is also conjugate. The conjugate gradient algorithm uses conjugacy to reduce the number of 
iterations required to minimise a quadratic equation. Being linearly independent is being 
orthogonal in a vector space, but conjugacy means a transformation can make two vectors 
orthogonal in another space (Haykin, 2009).  

Hermitian conjugacy, denoted as 𝐴∗, 𝐴ுor 𝐴ற, is complex square matrices that are equal to 
their conjugate transpose 𝐴 = 𝐴∗். The symmetry is captured such as an element, at i,j 
indices, is equal to its conjugate, at j, i indices: 𝑎௜௝ = 𝑎௝௜

∗ .  The adjoint of an operator is the 
infinite-dimensional generalization of conjugate transpose, where you find the transpose of 
an operator (in matrix form this is done by 𝐴௜௝

் = 𝐴௝௜  and then take the complex conjugate 
of it. This can be done in any order (𝐴)௜௝

∗ = ((𝐴)௜௝
் )∗ = ((𝐴௜௝)∗)் = 𝐴௝௜

∗ . 

We need to understand subgroups and simple groups to prepare for group decompositions. 
Subgroups are defined as 𝐻 ≤ 𝐺, when elements of H are subsets of 𝐺, and 𝐻 has a group 
invertible operation. Any group 𝐺 has at least two normal subgroups, 𝐺 is a subgroup of 
itself, and the trivial group containing one identity element {𝑒} is a subgroup of any group. 
A proper subgroup is 𝐻 < 𝐺, such that both elements are not equal. Lagrange theorem 
states that the order of H divides the order of G: given 𝐻 ≤ 𝐺 ⇒ |𝐻| divides |𝐺|. For 
example, if the number of elements in G, |𝐺| = 323, the factors dividing 323 are 1, 17, 19, 
and 323. The subgroup H containing one element is the identity element, G itself is the 
subgroup containing all its elements, and there might be other two subgroups containing 17 
and 19 elements, respectively.  

A simple group has no other groups except the identity group and is a building block for 
other groups, such as prime numbers to the Integers group. There are four classes of simple 
groups defined as follows: 

1. An Abelian group of Integer mod p group under addition: ℤ

௣ℤ
, +, where p is a prime 

number, which leads to having only two subgroups, the trivial identity group {0}, 

and the whole group ℤ

௣ℤ
, which is the definition of a simple group. Because prime 

numbers are infinite, there is an infinite number of groups in this class. 
2. The alternating non-Abelian group 𝐴௡ was proven to be simple for n≥5, and will be 

further explained while discussing normal series and their role in solving polynomial 
equations. 

3. Groups of Lie type will be further explained below. 
4. 26 Sporadic Groups do not fit into any category, among which a monster group 

contains 20 out of the 26 groups. 
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Conjugate subgroup 𝐻௧ is isomorphic of subgroup 𝐻 of group 𝐺 for any element 𝑥 ∈ 𝐺. 
𝐻௫ is defined as 𝐻௫: {𝑥ିଵℎ𝑥|ℎ ∈ 𝐻, 𝑥 ∈ 𝐺. }. If 𝐻௫ = 𝐻, then 𝐻 is a normal subgroup 
or self-conjugate subgroup 𝐻 ⊴ 𝐺. A normal subgroup H of group G is defined such that 
𝐻: {𝑥ିଵℎ𝑥|ℎ ∈ 𝐻, 𝑥 ∈ 𝐺. }, where x may or may not be in H. All subgroups of cyclic 
groups are normal, and one subgroup of Abelian groups is normal. An example normal 
subgroup is 𝑛ℤ ⊴ ℤ, such as 2ℤ ⊴ ℤ. 

In addition, measures of equivalence and similarity will make group decomposition 
feasible. Isomorphism, homomorphism, kernels, automorphism and isometry will be 
defined next. Isomorphism is when two groups (having similar structures/equal form) 
𝐺 ≅ 𝐺ᇱ has one-to-one mapping ∅: 𝐺 → 𝐺ᇱ, such that ∅(𝑥)∅(𝑦) = ∅(𝑥𝑦) for all 𝑥, 𝑦 ∈

𝐺. This leads to considering both groups as the same group. For example, two groups: 𝐺 

the finite integer mod 4 with addition operation: ℤ

ସℤ
, +, and the group 𝐻 containing 

elements {1, -1, i, -i} with multiplication operation. The Cayley tables for both groups are 
defined as follows and coloured for similarity, such as the identity element is coloured 
red, the second element 1 in the first group highlighted in green, needed a swap 
between the second and third elements in the second group to match the structure. The 
third element is highlighted in blue, and the last element is highlighted in magenta. The 
colour map shows that both groups have the same structure and are isomorphic. 
Abstractly they are the same group, regardless of the different operations and elements.  

𝐺:
ℤ

4ℤ
, + 

 𝐻: {1, −1, i, −i},× 

 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 
 

  1 i -1 -i 

1 1 i -1 -i 
i i -1 -i 1 

-1 -1 -i 1 i 

-i -i 1 i -1 
 

 

Homomorphism is when mapping between two groups ∅: 𝐺 → 𝐻 preserves the same 
structure, such that ∅(𝑥)∅(𝑦) = ∅(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐺, but without one-to-one mapping. A 
homomorphic group is an embedding such as a subgroup or a quotient map. For example, 
the infinite integer group with addition operation: ℤ, +, and the finite integer mod 2 with 

addition operation: ℤ

ଶℤ
, +, containing two elements {0, 1}. The first group: ℤ, +, can be 

broken into two sets: ℤ = {𝑒𝑣𝑒𝑛𝑠} ∪ {𝑜𝑑𝑑𝑠} , such that the operations in the first columns 

in the following table are defined, and the operations for the second group ℤ

ଶℤ
, are defined in 

the second column. If you replace even with zero and odd with 1, then both columns are the 
same.  

 ℤ, + divided into ℤ = {𝑒𝑣𝑒𝑛𝑠} ∪ {𝑜𝑑𝑑𝑠} ℤ

2ℤ
, + 
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even + even = even 0+0=0(mod 2), 

even + odd = odd 0+1=1(mod 2), 

odd + even = odd 1+0=1(mod 2), 

odd + odd = even 1+1=0(mod 2)   

We can define a mapping function between these two groups: 𝑓: ℤ →
ℤ

2ℤ
= ቄ

1 𝑖𝑓 ℤ 𝑖𝑠 𝑜𝑑𝑑

0 𝑖𝑓 ℤ 𝑖𝑠 𝑒𝑣𝑒𝑛
. 

To generalise this concept to any two groups 𝐺,∗ and 𝐻,⋄ with abstract operations, we 
attempt defining a mapping function between both groups 𝑓: 𝐺 → 𝐻 such that for 𝑥, 𝑦 ∈ 𝐺, 
we have  𝑓(𝑥), 𝑓 (𝑦) ∈ 𝐻, and 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ⋄ 𝑓 (𝑦), sending identities to identities, and 
inverses to inverses. In the isomorphism example, the mapping for identities is 𝑓: 0ீ → 1ு 
and the mapping for inverses is 𝑓: 1ீ → 𝑖ு , 𝑓: 3ீ → −𝑖ு, and this is the inverse of the 
identity 𝑓: 2ீ → −1ு: This function does not need to be one-to-one/injection nor 
onto/surjection in homomorphism, but needs to be both 1-1 and onto, which is a bijection 
for isomorphism. The mapping function does not need to be invertible for both testing for 
homomorphism and isomorphism. If we can construct such a mapping, these two groups 
are homomorphic, and if they are of the same cardinality, they are isomorphic. This is very 
important to identify similar and identical groups and their fundamental building blocks. 
This is what we did in chapter two to factorise a matrix to decompose into dominant 
submatrices such as SVD, and we did it in chapters three and four for tensor 
factorisation/decomposition as well. 

A Kernel of a group homomorphism 𝑓: 𝐺 → 𝐻 measures how similar these two groups are, 
i.e. how far the mapping function is far from a one-to-one function. This is done by mapping 
all elements in G to the identity element in H. Different mapping functions have different 
kernels. If f is an isomorphism, then the kernel is the identity element. If f is not an 
isomorphism, then at least two elements in G map to the identity element in H. This makes 
the definition of the kernel be: 𝑘𝑒𝑟(𝑓) = {𝑥 ∈ 𝐺|𝑓(𝑥) = 1ு}. Here is at least one mapping 
of identities both ways in the kernel in the case of isomorphism as a one-to-one mapping, 
and there will be more than or equal to two mappings in the kernel in the case of 
homomorphism. This defines the kernel as a subgroup of G. 

Automorphism is when a group is mapped to itself, such that the set of automorphisms of G 
forms a group under composition, denoted Aut(G). For example, all permutations of a 
graph, such as the connections of its vertices, remain the same, i.e., maintaining the same 
graph topology, which is called the automorphism group of this graph. 

Isometry groups are the group of transformations of a metric space which leave the metric 
invariant. 
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5.1.3 Group Types 

Infinite but countable groups, such as the set of integers in ℤ under addition operation, and 

the cyclic group of order n, denoted ℤ௡, or ℤ

௡ℤ
 or 𝐶௡. The order of an element 𝑥 ∈ 𝐺, is the 

smallest positive integer n such that 𝑥௡ = 𝑒 and is defined as |𝑥| = 𝑛. When there is no 
value for n, then the order of the element is infinite, making the group infinite. For 
multiplication group on non-zero Real numbers ℝ, the order of the identity element  |1| =

1, because it has no inverse, while |−1| = 2 because (−1)ଶ = 1. Other elements in this 
group have infinite orders. 

Uncountable Topological groups, such as Group G with topology 𝑓(𝑥) = 𝑥ିଵ as a 
continuous map 𝑓 ∶  𝐺 →  𝐺; and 𝑔(𝑥, 𝑦) = 𝑥𝑦 as a continuous map 𝑔: 𝐺 × 𝐺 → 𝐺. A 
topology is a system of G subsets called open sets that obey certain axioms. 

A compact group is a topological group of open sets that can be covered/bounded with a 
subset of its elements. A locally compact group is a topological group in which any group 
element has a compact neighbourhood. A space T is compact if every infinite sequence of 
points t1, t2, …,(ti ∈ T) contains a subsequence of points that (a) converges to a point and (b) 
this point is in T. For example, the real line ℝଵ is not compact because the sequence of 
points ti = i, i = 1, 2,… does not have a convergent subsequence. The circumference of the 
unit circle in ℝଶ is compact. The interior of the unit circle is not compact because the 
sequence of points tn = 1 – 1/n  , n = 1, 2,…, converges to a point on the circumference and, 
therefore, is not in the original set. 

Abelian groups are commutative groups such that 𝑥𝑦 = 𝑦𝑥, which are much simpler than 
the non-commutative groups. 

Symmetric groups 𝕊௡, is defined as a finite group under function composition ∘ from the n! 
permutations of a set of degree n, S = {1, 2, …, n}, such that |𝕊௡| = 𝑛!. 𝜎ଶ𝜎ଵ is the 
permutation that we get by permuting {1, 2, . . . , n} first according to 𝜎ଵ and then according 
to 𝜎ଶ. It is considered as group G acting on set S, as a subgroup of 𝕊௡ denoted 𝕊|ௌ|. 
Symmetric groups are very important in machine learning and computational algebra 
because, according to the Cayley theorem, every finite group is a subgroup of a Symmetric 
group. The two-line notation of a permutation places the input on the top row and the 
output mapping in the bottom row. For example, a permutation 𝜎 is defined for 𝕊ସ as: 

𝜎 = ቂ
1 2 3 4
1 3 4 2

ቃ, such that 𝜎(1) = 2, 𝜎(2) = 3, and similarly, all remaining element 

mappings. This enables handling permutations as functions and enables function 
composition. The relations 𝜎ଶ൫𝜎ଵ(𝑖)൯ =  (𝜎ଶ𝜎ଵ)(𝑖) for all 𝜎ଵ, 𝜎ଶ  ∈  𝕊௡ and i = 1, 2, . . . , n, 

define group operations. For example, if 𝜎ଵ = 𝜎, and 𝜎ଶ = ቂ
1 2 3 4
4 3 2 1

ቃ m then 𝜎ଶ𝜎ଵ =

ቂ
1 2 3 4
2 4 3 1

ቃ by tracing the mapping from the top row to the bottom row in 𝜎ଶfirst, then 
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continue from the top row to the bottom row in 𝜎ଵ. 𝜎ଶ𝜎ଵ ≠ 𝜎ଵ𝜎ଶ because 𝕊ସis not Abelian. 
Only 𝕊ଵand 𝕊ଶ are Abelian.   

Cycle notation allows writing a permutation in one line as an ordered subset 𝑠ଵ, 𝑠ଶ, . . . , 𝑠௞ of 
{1, 2, … , n}, such that 𝜎(𝑠௜) =  𝑠௜ାଵ for i < k and 𝜎(𝑠௞) =  𝑠ଵ. For example, For example, a 
permutation 𝜎 for 𝕊ସ defined above in the cycle notation is (1)(2, 3,4), such that the 
permutation 𝜎 is a product of 2 cycles, the first is one mapping to itself in a 1-cycle, and the 
second is 2 → 3, 3 → 4, and 4 → 2 in a 3-cycle. 1-cycles can be omitted as they do not 
change anything. A 2-cycle is a transposition. The order of elements in a cycle is not 
important as they rotate to reach each other, and the order of the cycles does not matter. 
Therefore, it is advised to start with the smallest number. If a permutation composition has 
repeated elements in each permutation mapping cycle, then the order of the cycles will 
matter. For example 𝜎ଶ°𝜎ଵ = (1, 4)(2, 3)°(2, 3,4) ≠ 𝜎ଵ°𝜎ଶ = (2, 3,4)°(1, 4)(2, 3). 

The cycle-type of σ is a list of the lengths of all the cycles making up σ, encoded as a 
partition on integer n, denoted 𝜆 ⊢ 𝑛, such as 𝜆 = (𝜆ଵ, 𝜆ଶ, … , 𝜆௞)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜆௜ ≥ 𝜆௜ାଵ for 
i=1, …, k-1 such that 𝑛 = ∑ 𝜆௜

௞
௜ୀଵ , and k is the partition 𝜆 length. The partition of the 

previous example 𝜎 is 𝜆 = (1,3) , k=2, and 𝜆 ⊢ 𝑛 is (1,3) ⊢ 4. 

A cyclic group G with multiplication operation is defined as generated by one element x in a 
cyclic way. For example, for 𝑥 ∈ 𝐺, the smallest subset H containing x should contain x, its 
inverse, the identity element 1, and all powers of x and its inverses: {…, 
𝑥ିସ, 𝑥ିଷ, 𝑥ିଶ, 𝑥ିଵ, 1, 𝑥, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, … }. This group is the group generated by  

𝑥𝐻 = 〈𝑥〉, and when 𝐺 = 𝐻 = 〈𝑥〉, then G is a cyclic group. Another example for the groups 
with addition operation is the group of the integers ℤ, +, the smallest subgroup H containing 
x, is {…, −4𝑥, −3𝑥, −2𝑥, −𝑥, 1, 𝑥, 2𝑥, 3𝑥, 4𝑥, … }, and H is cyclic generated by 𝑥𝐻 = 〈𝑥〉. We 

can have finite cyclic groups, such as Integers mod n under addition: ℤ

௡ℤ
, +. Cyclic groups are 

fundamental to the theorem of finitely generating Abelian groups, which states that any 
finitely generated Abelian group can be divided by a finite number of cyclic subgroups. 

A symmetric (r, 0) tensor is an (r, 0) tensor whose value is unaffected (invariant) by the 
interchange (or transposition) of any two of its arguments, 𝑇 (𝑣ଵ, . . . , 𝑣௜, . . . , 𝑣௝  , . . . , 𝑣௥)  =

 𝑇 (𝑣ଵ, . . . , 𝑣௝ , . . . , 𝑣௜ , . . . , 𝑣௥) for any i and j. For rank two tensors, the symmetry condition 
implies Tij = Tji. Symmetric (0,r) tensors are defined similarly.  You can easily check that the 
symmetric (r, 0) and (0,r) tensors each form vector spaces, denoted 𝑆௥(𝑉∗) and 𝑆௥(𝑉)  
respectively. This also means that these matrices are invariant under any rearrangement of 
the indices (since any rearrangement can be obtained via successive transpositions) 

 

An antisymmetric (or alternating) (r, 0) tensor is one whose value changes sign under 
transposition of any two of its arguments, i.e. 𝑇 ൫𝑣ଵ, . . . , 𝑣௜ , . . . , 𝑣௝ , . . . , 𝑣௥൯ =

 −𝑇 ൫𝑣ଵ, . . . , 𝑣௝ , . . . , 𝑣௜, . . . , 𝑣௥൯. Antisymmetric (0,r) tensors are defined similarly, and both 
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sets form vector spaces, denoted ⋀௥𝑉∗ and ⋀௥𝑉 (for r = 1 we define ⋀ଵ𝑉∗ = 𝑉∗  and ⋀ଵ𝑉 =

𝑉 ). Antisymmetry has the following properties: 

1. 𝑇(𝑣ଵ, . . . , 𝑣௥) = 0 if 𝑣௜  =  𝑣௝ for any 𝑖 ≠  𝑗 

 2. 𝑇(𝑣ଵ, . . . , 𝑣௥) = 0  if {𝑣ଵ, . . . , 𝑣௥} is linearly dependent 

 3. If dim (V) = n, then the only tensor in ⋀௥𝑉∗ and ⋀௥𝑉  for r>n is the 0 tensor 

 

The symmetrization postulate states that all known particles in nature are either of type 
fermions such that their motion states are captured in a symmetric tensor or type bosons, 
such that their states are captured in an antisymmetric tensor. This postulate has many 
consequences that exclude many states from the high dimensional permutations that could 
be considered otherwise. It is not clear how valid this postulate is for all datasets in all 
application domains for machine learning, but it is definitely applied in many applications 
related to Physical motion and is worth checking.  

A Lie group is at the intersection of group theory, differential geometry and linear algebra, 
named after the Norwegian mathematician Sophus Lie, who studied them in the late 1800s. 
Lie groups are continuous groups with group elements that are ‘infinitely close’ to the 
identity, known as ‘infinitesimal transformations’ or ‘generators’ or Lie Algebra. The 
simplest definition is that Lie groups can be parametrized in terms of a certain number of 
real variables, which define the dimension of the group, such as the surface of a sphere but 
should also be studied from the algebra based on an identity element. A lie infinite group G 
is a topological group with operations multiplication and inversion being smooth maps that 
is also a smooth differentiable manifold with the same topological maps 𝑓(𝑥) = 𝑥ିଵ: 𝐺 →

 𝐺  and 𝑔(𝑥, 𝑦) = 𝑥𝑦: 𝐺 × 𝐺 → 𝐺. An example of a Lie group is a group of invertible nxn 

matrices M of real numbers that is defined as follows: 𝑀 = ቐ𝐴 = ቎൥

𝑎ଵଵ ⋯ 𝑎ଵ௡

⋮ ⋱ ⋮
𝑎௡ଵ ⋯ 𝑎௡௡

൩቏ቑ , 

where det(A) ≠0, i.e. the lie group contains the entries of the matrix, forming a vector of n2 
dimensions: 𝑀 → (𝑎ଵଵ, 𝑎ଵଶ, … , 𝑎ଵ௡ , 𝑎ଶଵ, … , 𝑎ଶ௡ , … 𝑎௡௡) ∈ ℝ௡మ

. Taking the space ℝ௡మ
and 

removing all matrices B with determinants equal to zero, we have a manifold. A lie type 
group is similar to a lie group, but it is a finite group that is defined over a finite field. Many 
groups belong to this category; that is a simple group. 

Lie Algebra is the smallest set of properties necessary for a vector space spanned by 
infinitesimal generators (defined below) to generate a Lie group maintaining its structure. 
The ℝ௡ Euclidean space is an example of a non-compact Lie group under the addition of 
vector, and zero vector as the identity with the differential and topological structures of ℝ௡. 
Lie algebra g  is a vector space that is closed under commutators, in the sense that if X and Y 
∈ g, then so is [X,Y] ≡ XY – YX. Expanding the commutators lead to satisfying the Jacobi 
Identity, such that [[X,Y],Z] + [[Y, Z], X] +[[Z, X],Y] = 0, ∀X,Y,Z ∈ g. A compact Lie group 
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example is the circle group 𝕋 of complex numbers of unit modulus, forming a group under 
multiplication. 

The Lie group connects components on a manifold in terms of infinitesimal generators, 
which means the smallest value of change 𝜖 that can be applied multiple times on the 
coordinates unit basis to generate all components in the manifold. For example, in a one-
dimensional Manifold M for a group with a multiplication operation, the identity element is 
1, and the tangent vector 𝜎 = +1 is taken as a basis for M. An infinitesimal transformation 
in the neighbourhood of the identity element is 𝑔 =1+ 𝜖𝜎. if 𝜖 = 0.001, and we want to 
represent point 2, then 𝑔 =1+0.001=0.001, and 𝑔଺ଽଷ = 1.999013 is the closest 
approximation that generates 2. Using calculus, an exact generator can be used to avoid 
approximation. Let  𝑔ఏ be a member of the group labelled by a real number 𝜃, then 𝑔ఏ is 
expressed in terms of the exponential function exp(𝜃, 𝜎). These exponential maps applied 
on infinitesimal generators reveal much information about the group's structure. 
Generalising this to a higher dimension, given a Lie Group (differential Manifold) with basis 
T1, T2, . . . , Tn of Tangent space TxM, where Ti is the  infinitesimal generators, any element 𝑥 
of G in the neighbourhood of the identity can be written in the form: 𝑥(𝑥ଵ, … , 𝑥௡) =

 exp(∑ 𝑥௜𝑇௜
௡
௜ୀଵ )for some 𝑥ଵ, … , 𝑥௡ ∈ ℝ.  

Lie groups are very close to being entirely determined by the behaviour of their one-
parameter subgroups; in particular, every element of a Lie group sufficiently close to the 
identity is contained in a one-parameter subgroup. This association between finite 
transformations and their infinitesimal versions is precisely the relationship between a Lie 
group and its Lie algebra. For example, rotation operators transform the orthogonal 
matrices into antisymmetric matrices.  

The Lie bracket abstracts the Lie algebra from the matrix Lie groups to all other Lie groups. A 
Lie Group, which is a Manifold with tangent space at point x (TxM), has a Vector space V of 
directions (infinitesimal generators) along which this point translates along the manifold. 
The Lie bracket g operation is the vector space V with bilinear map [. , . ]: 𝑉 × 𝑉 → 𝑉 turns 
the Tangent space TxM into a Lie algebra ℒ(𝑉), which is the set of all linear operators on V. 
The exponential mapping of infinitesimal generators tells us that at least locally, ℒ 
completely determines the structure of G. This is defined by the bracket [X,Y] for 𝑋, 𝑌 ∈ T௫M 
generators for the group, which is calculated as [X,Y](f) = X(Y(f)) − Y(X(f)). This means a 
generator X acting on another generator Y that would give zero first-order term ((I+X)(I+Y) = 
1+X+Y), the second-order infinitesimal term is then (XY – YX) independent of 
parametrization. The Lie bracket g satisfies the Antisymmetry property  [X,Y]=- [Y, X] ∀X,Y ∈ 
g and the Jacobi identity explained earlier. The Lie bracket encodes the entire Taylor series 
expansion of the multiplication on the Lie group near the identity, capturing the "local" 
behaviour of the Lie group. 

A differentiable Lie group is a differentiable Manifold M, such that a chart at point 𝑥 ∈ 𝑀 is 
a homeomorphism φ from an open neighbourhood U of p to an open subset of ℝ௡. Every 
point of a differentiable manifold is covered by at least one chart. The ith component of φ is 
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a function [𝜑(𝑥)]௜: 𝑈 → ℝ, simplified to φ௜. We say that a function 𝑓: 𝑀 → 𝑅 is 

differentiable at point x if 𝑓 ◦ 𝜑ିଵ is differentiable at φ(x), and use the notation ఋ

ఋ௫భfor 
ఋ

ఋ௫భ(𝑓 ◦ 𝜑ିଵ). 

5.1.3.1 Classical groups: 

These definitions laid down the foundation for the classical groups identified by physicists in 
an attempt to explain how the universe works. Then further analysed by mathematicians 
over more than a century in a wealth of literature that can not be explained clearly in a 
fraction of a chapter. I will focus on the groups used in computational graphics applications 
summarising some of their properties that are useful in understanding the stack of code in 
which they are used.   

When Lie groups arise as groups of matrices (such Lie groups are called linear groups), the 
generators T1, T2, . . . , Tn are themselves matrices, the exponentiation is just matrix 
exponentiation, and [A,B] is equal to the commutator AB − BA. In chapter one, we have seen 
how to use matrices to solve a system of equations. We can make groups from matrices in 
two different ways for addition or multiplication operations. The matrix of real numbers ℝ 
under addition has the zero matrices as the identity matrix and forms infinite groups that 
are Abelian and non-Abelian. The matrices under multiplication require matrices that can be 
multiplied together, so restricting them to nxn matrices is required, using the nxn identity 
matrix, and the inverses require the matrices to have non-zero determinants, making them 
a General Linear Group 𝐺𝐿௡(ℝ). When the determinant is equal to one, it is the Special 
Linear Group 𝑆𝐿௡(ℝ). 

The general linear group of vector space V denoted GL(V), is a Lie group that is formed by 
the composition of maps of invertible linear transformations on V. When V is finite n-
dimensional space, GL(V) is a group of 𝑛 × 𝑛 invertible (nonsingular) matrices of linearly 
independent rows and linearly independent columns, under matrix multiplication operation. 
Sometimes the notation used is GL(N, ℝ), or 𝐺𝐿ே(ℝ), which means N-dimensional general 
linear group of real numbers ℝ. For example, a group containing one element as a 2x2 

matrix ቂ𝑎 𝑏
𝑐 𝑑

ቃ, with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ having determinant ≠ 0, is a 𝐺𝐿ଶ(ℝ) or GL(2, ℝ), the 

identity of this group is the 2x2 identity matrix. The subset of these matrices with 
determinant +1 forms a (sub)group called SL (n). The collection of n× n unitary matrices U(n) 
also forms a group under matrix multiplication. 

When groups are unitary, they form U(N+, N-, ℝ) with parameters as positive dimensions 
and negative dimensions, along with the Field definition. When linear groups are 
orthogonal, they form O(N+, N-; ℝ) with the same definitions of the parameters. 
Orthogonality means that the matrix representing the group has the property 𝐴ିଵ =

 𝐴் , 𝑜𝑟 𝐴்𝐴 = 𝐼. Both U and S groups are denoted for simplicity U(N) and O(N). The 
Symplectic groups Sp(2N, ℝ) have even dimensions 2N, on ℝ, and ℂ, but not when defined 
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on Quaternions Sp(N,Q). There are also the unitary symplectic groups USp(2N+,2N-; ℝ). U 
and O have special groups, such as the SU(n), a special unitary group of nxn unitary matrices 
with determinant =1.  The Special Orthogonal group denoted as SO generalises rotation 
transformation matrices invariant of dimension and geometry. They are known as rotation 
matrices R(θ) ∈ SO(N) that are cross-product operators (CPO) capturing similarities with 
interesting properties. SU(2) is crucial in the theory of angular momentum in quantum 
mechanics, and SU(3) is fundamental in particle physics. 

In chapter one, the rotation 2x2 matrix R(𝜃) ∈ SO(2) was derived manually from 
trigonometry rules, which is a one-parameter lie abelian and compact group. As a linear Lie 
group, it is generated from a single parameter, the angle 𝜃, and using the Euler equation; it 

can be expressed as a complex number as 𝑅(𝜃) = ቂ
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ቃ = 𝐼ଶ cos 𝜃 + 𝑖𝜎ଶ sin 𝜃 =

𝑒(௜ఙమఏ), where 𝐼ଶ is the 2x2 identity matrix.  𝜎ଶ is the generator for 𝜃  and is obtained by 

differentiating R(𝜃), 𝜎ଶ = −𝑖
ௗோ

ௗఏ
ቚ

ఏୀ଴
= −𝑖 ቂ

0 1
−1 0

ቃ = ቂ
0 −𝑖
𝑖 0

ቃ. Figure 3(a) illustrates a point 

rotation on the complex plane. 

(a) (b)  

Figure 3: (a) 4 points on a sphere on a complex plane. Starting from point p, each point is generated by 
multiplying by I, making I a rotation operator for 90-degree rotations. (b) point p rotates 90 degrees around k-
axis using quaternion q (Jeremiah, 2012). 

Expanding to 3D, we define rotation around each axis independently. A rotation around the 

z-axis, 𝑅௭(𝜃) = ൥
cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0
0 0 1

൩, which is generated from 𝑇௭ = −𝑖
ௗோ೥(ఏ)

ௗఏ
ቚ
ఏୀ଴

=

൥
0 −𝑖 0
𝑖 0 0
0 0 0

൩. A rotation of angle 𝜃 can be generated by successive N applications of smaller 

angle rotations, ఏ

ே
= 𝛿𝜃. The infinitesimal angle 𝛿𝜃 may be expanded from 𝑅௭(𝛿𝜃) = 𝐼ଷ +

𝑖𝛿𝜃𝑇௭, to N rotations as 𝑅௭(𝜃) = [𝐼ଷ + 𝑖𝛿𝜃𝑇௭]ே = ൥
1 0 0
0 1 0
0 0 1

൩ + 𝑖𝛿𝜃 ൥
0 −𝑖 0
𝑖 0 0
0 0 0

൩ =

൥
1 𝛿𝜃 0

−𝛿𝜃 1 0
0 0 1

൩. As N goes to ∞ , 𝑅௭(𝜃) = lim
ே→ஶ

ቂ1 + 𝑖
ఏ

ே
𝑇௭ቃ

ே
= 𝑒(௜ఏ ೥), which identified 𝑇௭ 



CHAPTER 5  

19 

as generator for 𝑅௭. This is solved by the series expansion 𝑒௫ = lim
௡→ஶ

(1 +
௫

௡
)௡ = 1 + 𝑥 +

௫మ

ଶ!
+

௫య

ଷ!
+ ⋯. Similarly, for the other axes, by differentiating the coordinate rotations: 

𝑅௫(𝜓) = ൥

1 0 0
0 cos 𝜓 sin 𝜓
0 −sin 𝜓 cos 𝜓

൩, and 𝑅௬(𝜑) = ൥

cos 𝜑 0 −sin 𝜑
0 1 0

sin 𝜑 0 cos 𝜑
൩, we get the generators: 

𝑇௫ = ൥
0 0 0
0 0 −𝑖
0 𝑖 0

൩ , 𝑇௬ = ൥
0 0 𝑖
0 0 0

−𝑖 0 0
൩. The Lie algebra for these rotation groups has a basis 

൛𝐼, 𝑇௫ , 𝑇௬, 𝑇௭ൟ, and is determined by the single relation [𝑇௔ , 𝑇௕] =  𝜖௔௕௖𝑇௖, where 𝜖௔௕௖ is +1 if 
(a, b, c) is a cyclic shift of (x, y, z); 𝜖௔௕௖ = −1 if it is a cyclic shiŌ of the reverse permutaƟon (z, 
y, x) and 𝜖௔௕௖ = 0 in all other cases. Then SO(3) has commutators of the basis elements as 
ൣ𝑇௫ , 𝑇௬൧ =  𝑇௭,   ൣ𝑇௬, 𝑇௭൧ =  𝑇௫ ,    [𝑇௭, 𝑇௫] =  𝑇௬. When the generators are labelled with 
numbers instead of letters, we can extend to the higher dimensions easy as ൣ𝑇௜, 𝑇௝൧ =

∑ 𝜖௜,௝,௞𝑇௞
ଷ
௞ୀଵ . These are the angular momentum commutation relations of quantum 

mechanics. 

The above θ, 𝜓, 𝜑 are axes' angle of rotations used as parameters to generate the rotation 
matrices. There is always a single-axis rotation that simplifies any combinations of these 
three rotations using interpolation. Other parameters to generate these matrices exist, such 
as the Euler angles and the quaternions. Euler rotations apply three consecutive rotations 
on each axis using  Euler angles. Euler sequential rotations cause problems when two axes 
are lined up and lose a degree of freedom, causing the “gimbal lock” problem. Quaternions 
solve this problem, performs rotations in any order, and make interpolation easier.  A 
quaternion has four components representing 4 points on the surface of the sphere, 
representing the rotation in 3D. The first is usually denoted w, as the unrotated point, x 
represents 180-degree rotation around the x-axis, similarily, y and z components represent 
180-degree rotations around y- and z-axis, respectively. A quaternion 3D orientation is 
expressed as as qpq-1 of some 3D point p = xi+yj+xk, and q is the orientation quaternion, for 
example as (0.5+0.5i+0.5j-0.5k), and its inverse q-1= (0.5-0.5i-0.5j+0.5k) . This uses the 
quaternion multiplication properties that extend the complex numbers multiplications. 
Figure 3(b) illustrates a point p 3D rotation using quaternion q. Because it is difficult to 
choose these points, most animation and graphics software do not expose their values. 
However, the blender software exposes the quaternion values. There are many visualisation 
videos to understand quaternions, such as https://eater.net/quaternions.  

This example set of groups (rotation and translation) shows how a lie group can be 
generated from infinitesimal generators, such as the angular momentum operators/vectors 
generating rotations and the momentum operator generating translations. They also show 
how two or more successive transformations can be combined using a different 
transformation and can be reversed using an inverse transformation.    

SO(3) is generalised to ℝ௡ as SO(n). SO(n) is a manifold with various charts that allows a 
change of basis or coordinate systems. This is generally used in computer graphics and 
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planning the motion of robots or objects in 3D scenes in a series of coordinate system 
changes between the different coordinate frames of the camera, the robot and the world.  
(Olguín Díaz, 2018) explains more details about how these matrices are constructed from 
the degrees of freedom (represented as infinitesimal generators as explained earlier). For 
example,  three parameters are required in ℝଷ to construct the nine elements of a rotation 
matrix using exponential mapping of the cross product of the parameters vector. The 
symmetry of all possible rotations around the intrinsic axis (the current coordinate frame of 
the robot or object) or the extrinsic axis (the base frame) creates 24 different possibilities. 
The Euclidean group, denoted E(n) or ISO(n),  is a group of Euclidean isometries such that 
the transformations (all translations, rotations, and reflections) preserve the Euclidean 
distance between any two points. The Special Euclidean Group denoted E+(3), ISO+(3), or 
SE(3) of order 3 is a mapping transformation that combines rotation R, and a translation d 
(no reflection) from the parameters of vectors  (R, d) on each axis, 𝑆𝐸(3)  =  ℝଷ  ×  𝑆𝑂(3). 
Their elements represent rigid motion. The Skew Symmetric Group SS(3) of order 3 is a 
mapping transformation that combines the rotation matrix and the angular velocity.  

The projective space Pn, such as those used in image representations, has n+2 basis, the 
standard basis ei = [0, …, 1, …, 0]T, where only the ith position element is equal to 1, for 1 ≤ i ≤ 
n+1, and the standard projective basis en+2=[1, 1, …, 1]T, where all elements are equal to 1. 
These projective basis are called homogeneous coordinates. For 3D, we need four 
coordinates represented using the quaternions. Pn is topologically equivalent to the unit 
sphere Sn of ℝ௡ାଵ, in which the antipodal points have been identified. Since any point in Sn 
is represented by the vector x=[x1, …, xn+1]T such that 𝑥 = ∑ 𝑥௜

ଶ = 1௡ାଵ
௜ୀଵ  is also a point in Pn, 

with vector -x as the antipodal point of x found in both Sn and Pn. This means all projective 
spaces are compact spaces, and their differential structures are as simple as the Euclidean 
ones, such as embedding the sphere units in the higher space, as illustrated in Figure 4. A 
homography is an isomorphism of projective spaces to enable generalising an image 
representation invariant of the camera position by projecting a 2D image onto a 3D space, 
as explained by this OpenCV tutorial on various applications 
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html, and applied in data 
augmentation to achieve more invariance for DL data representation to reduce overfitting 
on specific image details such as 
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGe
nerator.  

The action of the three-dimensional rotation group SO(3) on the unit sphere 𝑆ଶ is an 
example of homogeneous space. Taking any point on  𝑆ଶ, the unit vector 𝑒௭ pointing along 
the z-axis, and a rotation matrix R, {𝑅𝑒௭|𝑅 ∈ 𝑆𝑂(3)} sweeps out the entire sphere, so 𝑆ଶ is a 
homogeneous space of SO(3). The isotropy group, in this case, is the subgroup of rotations 
about the z-axis, which is just SO(2). For example, composing two rotations in sequence, the 
first 𝑅ଵ is a 𝜃ଵrotation from coordinate frame A to B, {𝑅ଵ}஻

஺ (𝜃ଵ) and the second 𝑅ଶ is a 
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𝜃ଶ rotation from coordinate frame B to C {𝑅ଵ}஼
஻ (𝜃ଶ), using homogenous coordinate is 

〖{𝑅〗ଵ}஻
஺  (𝜃ଵ) × {〖𝑅ଵ}〗஻

஼   (𝜃ଶ): 

= ൦

cos 𝜃ଵ sin 𝜃ଵ 0 0
−sin 𝜃ଵ cos 𝜃ଵ 0 0

0 0 1 0
0 0 0 1

൪ × ൦

cos 𝜃ଶ sin 𝜃ଶ 0 0
−sin 𝜃ଶ cos 𝜃ଶ 0 0

0 0 1 0
0 0 0 1

൪ = ൦

cos  (𝜃ଵ + 𝜃ଶ) sin(𝜃ଵ + 𝜃ଶ) 0 0
−sin(𝜃ଵ + 𝜃ଶ) cos(𝜃ଵ + 𝜃ଶ) 0 0

0 0 1 0
0 0 0 1

൪ 

All matrices in this subgroup are the same periodic function of one real variable, 𝜃, given by 

R(𝜃) ∈ 𝑆𝑂(2) =  𝑅ଵ(𝜃ଵ) + 𝑅ଶ(𝜃ଶ) = ൥
cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0
0 0 1

൩., i.e. 𝑆𝑂(2) is locally isomorphic 

to ℝଵ. Another 𝑆𝑂(3) example combining a rotation with a translation is ൦
cos 𝜃 sin 𝜃 0 0

−sin 𝜃 cos 𝜃 0 0
0 0 1 𝑑
0 0 0 1

൪; 

the set of such matrices is continuously parameterized by these two variables 𝜃 and d. Thus, 
this subgroup is a two-dimensional Lie group, resulting from the Cartesian product 
𝑆𝑂(2)  ×  𝑇(1). These groups are differential; their first-order derivative gives an expression 
of the velocity of a motion, and the higher-order derivative gives an expression of 
acceleration.  

From an algebraic point of view  𝑆ଶ ∼=
ௌை(ଷ)

ௌை(ଶ)
, and generalises to  𝑆௡ିଵ ∼=

ௌை(௡)

ௌை(௡ିଵ)
. There is 

also a surjective relationship from SU(2) to SO(3). In other words, SO(3) has SU(2) as a 
compact connected covering group, and SU(2) is the double cover of SO(3). Since the higher 
n SO have a Lie algebra with a 3 × 3 compact regular representation and can be composed of 
coset decomposition with respect to a compact subgroup. 

 

Figure 4: The coset space P=EXPP, originates from SO(3)/SO(2) ≈ SU(2)/U(1), appears as the surface of a sphere S2 
in ℝ3 (Gilmore, 2005). 

It is difficult to explain concisely how these relationships have been identified and how 
many of them are used in many computational applications.  Generally, some groups are 
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composed of simpler groups, simpler groups approximate complex groups, and others can 
be generated from parameters. For example, there is a Lie algebra isomorphism stemming 
from the group homomorphism between lower n SU and higher n SO, when SU act on a 
given vector field such as 𝑆𝑈(2) ≅ 𝑆𝑂(3) and  𝑆𝑈(4) ≅ 𝑆𝑂(6) because of the double cover 
in the representation. A theory states that nonsemisimple Lie groups can be constructed 
from semisimple Lie groups by a limiting procedure, and group expansion performs the 
inverse process.  Applications of Lie groups and their algebra leads to a complete listing of 
all the globally symmetric pseudo-Riemannian symmetric spaces, such as the sphere and the 
hyperboloid, are the Riemannian symmetric spaces associated with the group SO(3). If this 
very concise summary of this huge topic motivates you to learn how these are derived and 
the many properties and applications of expansions and contractions of these algebraic 
structures, please read full books on the subject such as (Gilmore, 2005) (Vince, 2021), 
(Altmann, 1986), (Jeevanjee, 2011) and (Dixon, 2002). 

The SO and SE matrices are implemented in OpenCV Python, such as affine transformations 
using “getAffineTransform”,  “getRotationMatrix2D”, and the perspective transformations 
using “getPerspectiveTransform”. Peter Corke implemented them in Matlab and partially 
implemented them in the Python package Robopy (Corke, 2017). Also, Python package 
PyGeometry implements many of these matrices. RobotPy is also a Robot simulator in 
Python that its path planning module builds on top of these matrices. 

5.1.3.2 Geometric groups: 

The group of symmetries is defined as a group of groups formed from the symmetries of a 
geometric shape, such that the shape looks the same before and after flipping and rotation. 
For example, the dihedral group is the group of symmetries of a regular n-polygon shape. 
This group contains 2n symmetries groups, the identity transformation that does nothing e, 

the 𝜃 rotation symmetries such that 𝜃 = 360∘ for complete rotation, or 𝜃 =
ଷ଺଴∘

௡
=

ଶగ

௡
 

radians for r single symmetric rotation that move one point to the next point position. 
Repeated application of r gives n different symmetries to rotate back to the original 
position, which is the identity: 𝑟௡ = 𝑒. The reflection/flip around an axis is another 
symmetric transformation. For the n-polygon, we have an axis passing through each point 
that can be used for symmetric reflections. If you flip twice, you return to the identity 
position: 𝑓ଶ = 𝑒. Other symmetries are formed by composing rotations and reflections. This 
makes the finite dihedral group of symmetries contains 2n symmetries defined as 
{𝑒, 𝑟, 𝑟ଶ, … , 𝑟௡ିଵ, 𝑓, 𝑟. 𝑓, 𝑟ଶ. 𝑓, … , 𝑟௡ିଵ. 𝑓}. This is non-Abelian such that 𝑟. 𝑓 ≠ 𝑓. 𝑟. Some 
denote this group as 𝐷௡for number of elements in the group, and others denote it as 𝐷ଶ௡for 
the number of symmetries in the group. For example, the simplest n-polygon is the 
equilateral triangle where n=3, and the dihedral group of symmetries for it contains six 
symmetries = {𝑒, 𝑟, 𝑟ଶ, 𝑓, 𝑟. 𝑓, 𝑟ଶ. 𝑓} such that the element order of r is 3, 𝑟ଷ = 𝑒, and the 
element order of f is 2, 𝑓ଶ = 𝑒 as shown in Figure 5.  
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Figure 5: The dihedral group of symmetries for an equilateral triangle. 

This goes on for polygons of higher degrees and other shapes. To summarise the group 
types discussed above, we have: 

 Finite Groups Infinite Groups 

Abelian Groups Integers mod n: ℤ\𝑛ℤ ℤ, ℚ, ℝ, ℂ under + 

Non-Abelian Groups Symmetric Groups: 𝕊௡for n > 2 Matrices: GL, SO, SU, … 

 

5.1.4 Group Decomposition 

Group decomposition into simpler ones is achieved using various methods. This section will 
explain some of these methods. Cosets are not subgroups, but they provide a traversal 
method of group elements, and their elements can be treated as subgroups. The following 
will explain the difference between cosets and subgroups, how they are used in group 
decompositions, and how similar methods can be applied to rings and modules. 

Left and right cosets of 𝐻 < 𝐺 and 𝑥 ∈ 𝐺 are defined as 𝑥𝐻 = {𝑥ℎ|ℎ ∈ 𝐻} as the left coset 
of x and the set 𝐻𝑥 = {ℎ𝑥|ℎ ∈ 𝐻} as the right coset of x, both cosets have the same 
cardinality as H. cosets are not groups and do not have the axioms stated earlier. Any two 
cosets are either identical or disjoint, and the set of left cosets provides a partition of 𝐺, i.e. 
𝐺 of cardinality |𝐺| = 𝑛 is split into k non-overlapping (disjoint) left cosets of the same 
cardinality |𝐻| = 𝑑: 𝐻,  𝑥ଵ𝐻,  𝑥ଶ𝐻, … ,  𝑥௡𝐻, such that 𝑑. 𝑘 = 𝑛, i.e. d divides n: 𝑑|𝑛. The 
same can be done using the right cosets. Abelian groups have left cosets the same as the 
right cosets. If 𝐻 is a normal subgroup, then 𝑥𝐻 =  𝐻𝑥 for any 𝑥 ∈  𝐺, hence the systems 

of left and right cosets are the same. This leads to ீ
ு

 forming a quotient group under the 
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operation (𝑥𝐻) (𝑦𝐻)  = (𝑥𝑦)𝐻, which is not a subgroup of G. Example quotient group ℤ

ହℤ
 Is 

explained below. 

A quotient space is defined for the left and right cosets. G/H is the quotient space of left 
cosets. Similarly, H\G is the quotient space of the right cosets. If H is a normal subgroup of 

G, then the group of cosets ீ
ு

 forms a group that is called factor group/quotient group and 

denoted 𝐻 ⊴ 𝐺. 

Module Arithmetic, founded by Gauss, takes a group of integers, partitions them into a 
finite number of sets, and handles each set as a new type of number. This is done using 
normal subgroups and Quotient groups in group theory. For example, the Integer mod 5 
group is the sets of r= Integer mod 5, as follows: 

r=0 {… , -10, -5, 0, 5, 10, …} 

r=1 {… , -9, -4, 1, 6, 11, …} 

r=2 {… , -8, -3, 2, 7, 12, …} 

r=3 {… , -7, -2, 3, 8, 13, …} 

r=4 {… , -6, -1, 4, 9, 14, …} 

Applying the group operation on an element from one specific subgroup to an element in 
another specific subgroup will produce an element in the same third subgroup. These are 
called congruence classes. For example, in integer mod n group: ℤ/𝑛ℤ, the group with 
elements a, b, a is congruent to b, if they give the same remainder when divided by n. 
Another example is the Integers ℤ group with addition operation has an infinite number of 
subgroups: ℤ, 2ℤ, 3ℤ, 4ℤ, 5ℤ, … Given one subgroup 5ℤ, and all possible remainders to it, we 
represent ℤ group with one disjoint subgroup and four cosets as shown in the table below. 
Adding an element from the first coset to an element of the third coset yield an element in 
the fourth coset: (1 + 5ℤ) + (3 + 5ℤ ) = (4 + 5ℤ ). These sets are congruence classes. 

5ℤ subgroup r=0 {… , -10, -5, 0, 5, 10, …} 

1 + 5ℤ coset r=1 {… , -9, -4, 1, 6, 11, …} 

2 + 5ℤ coset r=2 {… , -8, -3, 2, 7, 12, …} 

3 + 5ℤ coset r=3 {… , -7, -2, 3, 8, 13, …} 

4 + 5ℤ coset r=4 {… , -6, -1, 4, 9, 14, …} 

 

A left transversal A is a set of coset representatives with two distinctive elements 𝑥, 𝑦 ∈ 𝐴,  
𝑥𝐻 ≠ 𝑦𝐻 and ∪௫∈஺ 𝑥𝐻 = 𝐺. Right transversals are defined analogously. 
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Other types of cosets are two-sided and double cosets. Two-sided cosets are sets of the 
form 𝑥ଵ𝐻𝑥ଶ = {𝑥ଵℎ𝑥ଶ|ℎ ∈ 𝐻} (with 𝑥ଵ, 𝑥ଶ  ∈  𝐺). Double cosets are defined for 𝐻ଵ and 𝐻ଶ 
are both subgroups of G such that 𝐻ଵ𝑥𝐻ଶ = {ℎଵ𝑥ℎଶ| ℎଵ ∈ 𝐻ଵ, ℎଶ ∈ 𝐻ଶ} (with 𝑥 ∈ 𝐺). This 

forms the double quotient space ுభ\ீ

ுమ
. 

Algebraic structures are often constructed from the direct sums or direct products of two or 
more simpler structures. The direct product of two groups G, H, denoted 𝐺 × 𝐻, is the 
group of pairs (𝑔, ℎ), 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 resulting from the cartesian product defined as 
(𝑔ଵ, ℎଵ)(𝑔ଶ, ℎଶ) = (𝑔ଵ𝑔ଶ, ℎଵℎଶ). The identity of 𝐺 × 𝐻 is (𝑒ீ , 𝑒ு). The group operations are 
defined on the pairs as given (𝑎, 𝑏), (𝑥, 𝑦) ∈ 𝐺 × 𝐻 , then (𝑎, 𝑏). (𝑥, 𝑦) = (𝑎. 𝑥, 𝑏. 𝑦). For 
example, given 𝐺 is ℤ under addition and 𝐻 is {1, -1, i, -i} under × , then 𝐺 × 𝐻 =

{(𝑥, 𝑦)|𝑥 ∈ ℤ, 𝑦 = ±1 𝑜𝑟 𝑦 = ±𝑖} having identity element (0, 1). A group operation on the 
pairs (5, -i), (0, 1) = (5+0, -i.1)=(5, -i). This is because the first group operation is the addition, 
and the second group operation is the multiplication. The direct product can be for any 
number of groups, forming tuples containing elements from each group, such as 
𝐺ଵ × 𝐺ଶ × 𝐺ଷ = {(𝑥, 𝑦, 𝑧)|𝑥 ∈ 𝐺ଵ, 𝑦 ∈ 𝐺ଶ, 𝑧 ∈ 𝐺ଷ} with identity element ൫𝑒ீభ

, 𝑒ீమ
, 𝑒ீయ

൯, and 
abstract group operation as defined for each group  (𝑎, 𝑏, 𝑐) ∗ (𝑥, 𝑦, 𝑧) =

൫𝑎 ∗ீభ
𝑥, 𝑏 ∗ீమ

𝑦, 𝑐 ∗ீయ
𝑧൯. If any one of the k groups in the direct product is infinite, then the 

direct product is infinite. If all groups are finite with orders 𝑛ଵ, 𝑛ଶ, … , 𝑛௞, then the order of 
the direct product is 𝑛ଵ ×  𝑛ଶ ×  … × 𝑛௞. The order of the direct product is infinite for the 
product of an infinite number of finite groups. If any one of the groups is non-Abelian, then 
the direct product is non-Abelian. Another example is ℝ௡, as a group, is the direct product 
of n copies of ℝ. Similarly, the n-dimensional unit torus 𝕋௡ is a direct product of n copies of 
the circle group. Not all groups are composed of the direct product of simpler groups. Other 
decomposition methods will be explained below. 

A Normal subgroup N of group G and 𝒙 ∈ 𝑮, partitions group G into several cosets. The 
elements of these cosets form a factor group in which the identity element is the normal 
subgroup, such that the multiplication of an element in one coset with an element in 
another coset will produce an element in a third coset: 𝑥ଵ𝑁. 𝑥ଶ𝑁 =

{𝑥. 𝑦|𝑥 ∈ 𝑥ଵ𝑁, 𝑦 ∈ 𝑥ଶ𝑁} = 𝑥௝𝑁. A factor group example in which N is the identity element 
and the rest are the cosets partitioned from G is as follows: 

൭

𝑥଺𝑁 𝑥଻𝑁 𝑥଼𝑁
𝑥ହ𝑁 𝑥ସ𝑁 𝑥ଷ𝑁

𝑁 𝑥ଵ𝑁 𝑥ଶ𝑁
൱ 

An ideal 𝐼 ⊆ 𝑅 to a ring R is like a normal subgroup is to a group, with concepts of 
partitioning into cosets and kernels of homomorphism. Ideal partition rings into cosets; a 
collection of cosets are called factor groups or quotient groups. Ideal I must be an additive 
subgroup of ring R:  (I, +)≤ (R, +), should also be closed under multiplication, and for any 
elements r in R, and i in I, then ir, ri should also be in I, such as cosets R/I form a 
factor/quotient ring. 



CHAPTER 5 

26 

A sub-module can be similarly defined to decompose modules, the way normal subgroups 
and ideals decompose groups and rings, respectively. For example, 3ℤ is a ℤ-module, with 
infinite sub-modules as 6ℤ, 9ℤ, 12ℤ, …, etc.  

The Normal Series is defined as decomposing finite group G and choosing a proper, normal 
and maximal subgroup such that it is the biggest normal subgroup in G, denoting it N1, then 
the next maximal normal proper subgroup N2, and so on until the identity subgroup. This 
forms the Normal Series: 𝐺 ⊳ 𝑁ଵ ⊳ 𝑁ଶ ⊳ ⋯ ⊳ 1 such that  𝑁௜ < 𝐺, and no duplicate 
subgroups. The composition series is a normal series that is as long as possible, similar to 
the prime factorisation of an Integer. A finite group G can have more than one composition 
series that are equivalent by having the same lengths and identical factor groups that might 
need to be rearranged to be isomorphic according to Jordan-Hӧlder Theorem. The 
composition series is used in solving equations of polynomial n such as anxn+an-1xn-

1+….+a1x+a0 = 0 formed as a group 𝑆௡. The solution is to decompose 𝑆௡  into its composition 
series 𝑆௡ ⊳ 𝑁ଵ ⊳ 𝑁ଶ ⊳ ⋯ ⊳ 1  with abelian factor groups of simple quotient groups 

ቀ
ேభ

ଵ
,

ேమ

ேభ
,

ேయ

ேమ
, … ቁ, but this fails when the polynomial degree n is ≥5. When n≥5, the group 𝑆௡ is 

decomposed into three groups only, the full group itself, the alternating group and the 

trivial identity group: 𝑆௡ ⊳ 𝐴௡ ⊳ 1. This leads to having the factor groups be ቀௌ೙

஺೙
,

஺೙

ଵ
ቁ, such 

that ௌ೙

஺೙
≅

ℤ

ଶℤ
, and ஺೙

ଵ
≅ 𝐴௡, and 𝐴௡ was proven to be simple for n≥5 and can not be 

decomposed. 

Semi-direct product of a group H and a subgroup H, denoted 𝐺 ⋊ 𝐻, is the group of all 
ordered pairs (𝑥, Λ)(𝑥 ∈ 𝐺, Λ ∈ 𝐻) with group multiplication defined (𝑥ᇱ, 𝛬ᇱ)(𝑥, 𝛬) =

(𝑥ᇱ𝛬ᇱ(𝑥), 𝛬ᇱ𝛬 ). The unit element of 𝐺 ⋊ 𝐻 is (𝑒ீ , 𝑒ு) and the inverse of (𝑥, 𝛬) is 
(𝛬ିଵ(𝑥ିଵ), 𝛬ିଵ). For example, the isometry group 𝐼𝑆𝑂ା(3) of ℝଷ (excluding reflections), 
composed of transformations 𝑥 → 𝑅𝑥 + 𝑏, where R is a rotation matrix, and b is a 
translation vector. This group and its generalisations to n dimensions are called the rigid 
body motions groups. 

Group mappings are identified by different properties as follows: 

 A function on a group G is a function 𝑓: 𝐺 → 𝑆 mapping each group element to a 
member of some set S, which is primarily a vector field 𝔽. If G is a finite group and V 
is a vector space over ℂ of dimension |G|, taking any basis of V and labelling the 
basis vectors with the group elements {𝑒௫}௫∈ீ, we identify the linear mapping of G 
elements L(G) with V by mapping each 𝑓 ∈ 𝐿(𝐺) to the vector ∑ 𝑓(𝑥)𝑒௫௫∈ீ . 

 A G-module of a group G is a vector space V over a field 𝔽 with operation 𝐺 × 𝑉 →

𝑉 satisfying: 𝑥𝑣 ∈ 𝑉; 𝑥(𝛼𝑣 + 𝛽𝑤) = 𝛼(𝑥𝑣) + 𝛽(𝑥𝑤); (𝑥𝑦)𝑣 = 𝑥(𝑦𝑣); 𝑒𝑣 = 𝑣. A G-
module admits a homomorphism 𝜑: 𝐺 → 𝐺𝐿(𝑉). 

 Translating a function on a group, 𝑓: 𝐺 →  𝑆 by 𝑡 ∈  𝐺, will yield 𝑓௧: 𝐺 → 𝑆, given 
by 𝑓௧(𝑥) =  𝑓(𝑡ିଵ𝑥), is the left-translate. If G is non-Abelian, we must distinguish 
the left-translate from the right-translate 𝑓(௧)(𝑥) = 𝑓(𝑥𝑡ିଵ). 
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 Haar measures  μ is a left-translation and right-translation invariant measure on G 
by any t ∈ 𝐺. Its left-translate is 𝜇௧(𝑋) = 𝜇({ 𝑥 ∈ 𝐺|𝑡𝑥 ∈ 𝑋}), where X is the left-

translate. It is unique up to scaling that is usually set so that ∫ 𝜇(𝑥) = 1
ீ

. 
 A closed set of transformations turns a bijective mapping into a group by two 

operations, compositions, and inverse produce elements in the set. Given a set of 
bijective mappings 𝑇 =  {𝑇௜: 𝑆 → 𝑆} if for any 𝑇ଵ, 𝑇ଶ  ∈  𝑇 , their composition 𝑇ଶ ◦

𝑇ଵ is an element of T, and if for any Ti ∈  𝑇, the inverse map 𝑇௜
ିଵ is also ∈  𝑇 , and it 

reverses the transformation Ti. 
 A group G acts on a set S if, to every group element x, we can associate a function 

𝑇௫: 𝑆 → 𝑆 (also 𝑇௫(𝑠), 𝑥(𝑠), 𝑜𝑟 𝑥𝑠) in such a way that 𝑇௘(𝑠) = 𝑠 for all 𝑠 ∈ 𝑆 and 

𝑇௫௬  =  𝑇௫ ቀ𝑇௬(𝑠)ቁ for all 𝑥, 𝑦 ∈ 𝑆 and s ∈ S. 

 An orbit is what we get when we apply every element of G to s as a subset of S 
{𝑥(𝑠)}௦∈ௌ,௫∈ீ. The orbits partition S into disjoint subsets. If there is only one orbit, 
we say that G acts transitively on S. 

 A homogeneous space of group G is a set S when there is only one orbit, and we fix 
any 𝑠଴ ∈ 𝑆, the map 𝜑: 𝐺 → 𝑆 given by 𝑥 → 𝑥𝑠଴ is surjective (i.e., sweeps out the 
entire set S). 

 The isotropy subgroup of group G is formed from group elements fixing 𝑠଴ , which 
are subgroup 𝐻 = {ℎ ∈ 𝐺|ℎ𝑠଴ = 𝑠଴}. The Left quotient spaces and homogeneous 
spaces are just two aspects of the same concept since 𝑥ℎ𝑠଴  =  𝑥𝑠଴ for any ℎ ∈ 𝐻 is 
a one-to-one correspondence between S and the left cosets G/H. 

The  Groups, Algorithms, and Programming (GAP) is an interpreted language written in C 
that has Pascal-like syntax and can be compiled.  The core GAP system contains built-in 
capabilities for group theory representation, algorithms, data sets, and many user-
contributed packages. They have GAP 4 now, online documentation, and examples, and it 
can be downloaded from https://www.gap-system.org/Releases/index.html (GAP4, 2022). A 
Python wrapper to GAP can be found at https://github.com/embray/gappy/. Some 
elementary abstract algebra routines are implemented in Python, such as sack: 
https://github.com/johnkerl/sack.  Ch5.ipynb uses some examples from sack to illustrate 
some of the concepts introduced in this section. 

5.1.5 Representation Theory 

Representation theory models the abstract groups using concrete matrices. A matrix 
representation 𝜌 of a compact group 𝐺 over Field 𝔽 associated with each element of 𝑥 ∈ 𝐺, 
a matrix 𝜌(𝑥) ∈  𝔽ௗഐ×ௗഐsuch that 𝜌(𝑥𝑦) = 𝜌(𝑥)𝜌(𝑦), for all 𝑥, 𝑦 ∈ 𝐺, 𝜌(𝑒) = 𝐼, 𝜌(𝑥ିଵ) =

(𝜌(𝑥))ିଵ, 𝑑ఘ is the order of the representation. This section explains the representation 
types and their properties. 
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Trivial representation is a one-dimensional irreducible constant representation 𝜌௧௥(𝑥) =

 𝐼 ∀𝑥 ∈  𝐺. From one-dimensional to |G|-dimensional are possible based on the complete 
reducibility theorem. 

Equivalent representations are defined for 𝜌ଵ, 𝜌ଶ, when there is an invertible square matrix 
T such that 𝜌ଵ(𝑥) = 𝑇ିଵ𝜌ଶ(𝑥)𝑇, ∀𝑥 ∈ 𝐺. 

The fundamental representation of a Lie group can be thought of as the generators of the 
group. For example, vector representation is used for G = O(3) or SO(3) acting on vector 
space V = ℝଷ, and the spinor representation are used for G = SU(2) acting on a vector space 
V = ℂଶ. 

The adjoint representation is based on the Adjoint homomorphism as a map from G to 
GL(g), where the operator AdA for A ∈  𝐺 is defined as 𝐴𝑑஺(𝑋)  =  𝐴𝑋𝐴ିଵ, 𝑋 ∈  𝑔. This is 
the Lie algebra of G. The following table summarises this and the previous representation 
type for some known groups (Jeevanjee, 2011): 

Group Fundamental Representation Adjoint Representation 

SO(3) vector vector 

O(3) vector pseudovector 

SU(2) spinor vector 

 

Regular representation is the |G|-dimensional representation based on the action of G on 
itself, such that the representation matrices’ rows and columns are labelled by the group 
elements, the matrix entries of the regular representations are:  

  ൣ𝜌௥௘௚(𝑥)൧
௫௬

 = ൜
1, 𝑖𝑓 𝑥𝑦 = 𝑧

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

A character is assigned to each representation  𝜒: 𝐺 →  𝐶, such that it is the trace of the 
representation matrices, 𝜒(𝑥) =  𝑡𝑟൫𝜌(𝑥)൯, such that equivalent representations will share 
the same character. 

Almost all interesting representations result from tensor products of other, simpler 
representations. Tensors themselves are elements of tensor product spaces, enabling 
transformations and reducible representation. Tensor representation is defined as (𝜌ଵ  ⊗

 𝜌ଶ)(𝑔) ≡ 𝜌ଵ(𝑔) ⊗ 𝜌ଶ(𝑔) ∈ ℒ(𝑉ଵ ⊗ 𝑉ଶ). The tensor representation provides a huge 
analysis of equivalent representations of known groups that can be studied from (Jeevanjee, 
2011). 

Reducible representation 𝜌 if each matrix 𝜌(𝑥) has the block structure: 𝜌(𝑥) =

൤
𝐴(𝑥) 𝐵(𝑥)

0 𝐶(𝑥)
൨, then there is always a similarity transformation 𝜌 → 𝑇ିଵ𝜌𝑇 that reduces 𝜌 
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to a direct sum: 𝑇ିଵ𝜌(𝑥)𝑇 = ൤
𝜌ଵ(𝑥) 0

0 𝜌ଶ(𝑥)
൨ , ∀𝑥 ∈ 𝐺 of smaller 

representations, 𝜌ଵ(𝑥), 𝜌ଶ(𝑥). This decomposition is unique, up to equivalence of 
representations and changing the order of the terms in the direct sum. The different 𝜌௜’s are 
not necessarily distinct. 

Identifying the inequivalent representations of a given group  or Lie algebra is important. 
This is difficult but can be simplified using the fact that for each group or algebra, there 
exists a denumerable set of inequivalent representations (known as the “irreducible” 
representations), out of which all other representations can be built by a kind of summation. 

Irreducible representation 𝜌 is when there is no invertible square matrix T that can 
simultaneously block diagonalise all 𝜌(𝑥) matrices in the above way. According to 
Wedderburn’s or Maschke’s theorem of complete reducibility, the blocks 𝜌௜ used in the 
decomposition above are called irreducible blocks. 

A complete set of inequivalent irreducible representations of 𝐺, denoted as ℛீ  or ℛ 
finding is essential for decomposition. Any ρ ∈ ℛ can be replaced by an equivalent 
representation 𝜌ଵ(𝑥) = 𝑇ିଵ𝜌(𝑥)𝑇. When, 𝜌(𝑥ିଵ) = (𝜌(𝑥))ିଵ ∀𝑥 ∈ 𝐺  , then these are 
unitary irreducible representations. Some essential properties are as follows: 

 If 𝐺 is finite, then ℛ is a finite set. 
 If 𝐺 is compact but not finite, then ℛ is a countable set. 

An irreducible character is assigned an irreducible representation  𝜒: 𝐺 →  𝐶, such that it is 
the trace of the irreducible representation matrices, 𝜒(𝑥) =  𝑡𝑟൫𝜌(𝑥)൯. 

A complete set of irreducible characters form an orthogonal basis for the space of class 
functions, and with conjugacy classes, both can unambiguously label the irreducible 
representations of a finite group, such that 𝜌෤(𝑥) = 𝜌(𝑥), 𝑖𝑓 𝑥 ∈ 𝐻; otherwise, it is equal to 
zero. 

The dual space 𝐺෠ of group 𝐺 is the space of characters. The Abelian groups corresponding 
characters form a group under the operation (𝜒ଵ𝜒ଶ)(𝑥) =  𝜒ଵ(𝑥)𝜒ଶ(𝑥). Pontryagin 

theorem states that the double dual 𝐺෠෠ is isomorphic to 𝐺, and the isomorphism is canonical 

in the sense that there is a unique 𝜉 ∈  𝐺෠෠ satisfying 𝜉(𝜒) =  𝜒(𝑥) for any 𝜒 ∈  𝐺෠. Harmonic 
analysis is founded on this theorem on Locally Compact Abelian (LCA) groups. 

G-Module V used in φ: G → GL(V), which is equivalent to 𝜌: G → GL(V), identifies an 
equivalence class of equivalent representations 𝜌 that are equivalent to mapping φ. V is 
defined with the basis 𝑒ଵ, 𝑒ଶ, … , 𝑒ௗഐ

, from which the matrix entries of the representation 

matrix 𝜌 can be recovered as [𝜌(𝑥)]௜,௝ =  ൣ𝜌(𝑥)𝑒௝൧
௜
. 
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The permutation representation GS naturally constructs group representations of group G 
associated with set S, forming a G-module with basis vectors labelled by elements of S on 
which G acts by 𝑔(𝑒௦) = 𝑒௚(𝑠). 

The restricted representation 𝜌 ↓ு
ீ , 𝜌 ↓ு is defined as given group 𝐺, its representation 𝜌, 

and a subgroup 𝐻 of 𝐺, then   𝜌 ↓ு
ீ = 𝜌(𝑥), ∀𝑥 ∈ 𝐻, which is just a subset of the matrices of 

the representation of 𝐺. 

The induced representation 𝜌 ↑ு
ீ , 𝜌 ↑ீ  is defined as given a subgroup 𝐻, 𝑡ଵ, 𝑡ଶ, . . . , 𝑡௟  be a 

transversal for the left cosets of H in G; we can induce a representation 𝜌 of G, by the block 
diagonal matrix:  

𝜌 ↓ு
ீ = ቎

𝜌෤(𝑡ଵ
ିଵ𝑥𝑡ଵ) ⋯ 𝜌෤(𝑡ଵ

ିଵ𝑥𝑡௟)
⋮ ⋱ ⋮

𝜌෤൫𝑡௟
ିଵ𝑥𝑡ଵ൯ ⋯ 𝜌෤൫𝑡௟

ିଵ𝑥𝑡௟൯
቏, where 𝜌෤(𝑥) = 𝜌(𝑥) if 𝑥 ∈ 𝐻 and otherwise, it is zero. 

For Symmetric group 𝕊௡ the conjugacy classes correspond exactly to the collection of 
elements of a given cycle type as defined earlier. Hence, the irreducible representations of 
𝕊௡ can be labelled by the integer partitions 𝜆 ⊢ 𝑛. 

The conjugacy class of transpositions is defined as the permutations of the form (i, j). A 
cycle (𝑠ଵ, 𝑠ଶ, . . . , 𝑠௞) can be written as the product (𝑠ଵ, 𝑠ଶ) · (𝑠ଶ, 𝑠ଷ) · … · (𝑠௞ିଵ, 𝑠௞), the set 
of transpositions generates the entire symmetric group. 

The sign of σ, denoted 𝑠𝑔𝑛(𝜎) ≡ (−1)௠, defines the even permutations for which sgn(σ) = 
1, and the odd permutations for which sgn(σ) = −1. This creates an alternating 
representation of 𝕊௡ of degree n, denoted 𝐴௡. Alternating groups and symmetric groups 
form a family of non-Abelian finite groups. The trivial representation ρ(σ) = 1 and the 
alternating representation ρ(σ) = sgn(σ) are both irreducible representations and the only 
two one-dimensional ones. 

The defining representation describes 𝕊௡ in terms of its action on (1, 2, …, n) with the n-

dimensional representation ൣ𝜌ௗ௘௙(σ)൧
௜,௝

 = ൜
1, 𝑖𝑓 σ(i) =  j
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, such that the 𝜌ௗ௘௙(σ) 

matrices are often called permutation matrices. The defining representation is reducible by 
the direct sum of trivial representations and some n-1 dimensional representation.  

A Ferres diagram is a graphical representation for integer partitions consisting of simply 
laying down 𝜆ଵ, 𝜆ଶ, … , 𝜆௞ empty boxes in k consecutive rows, such as for the shape of the 

(3, 2) partition of 5:  

A Young tableau is a Ferres diagram bijectively populated by the numbers 1, 2, . . . , n, such 

as:  
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A tabloid is an equivalence class of tableau under permutations of the numerals in each of 
the rows. For example, the set of tableaux of shape (3, 2), denoted as:  

 {𝑡} =
3 2 5
1 4

  = 

 

The permutation representation is a real-valued representation of shape λ that is defined 
such that if t and t′ are two members of some tabloid {t}, then their images σ(t) and σ(t′) for 
some 𝜎 ∈ 𝕊௡ will also be members of a common tabloid σ ({t}). The set of tabloids  of shape 
λ form a homogeneous space of the symmetric group 𝕊௡. 

The row stabiliser Rt of a tableau t of shape λ is defined as the subgroup of 𝕊௡ which leaves 
the rows of t invariant, i.e., only permutes numerals within each row. The column stabiliser 
Ct is analogous to the row stabiliser. 

The permutation module denoted Mλ is the submodule of ℂ[𝕊௡], formed from the elements 
corresponding to tabloids of shape λ. Permutation modules Mλ are reducible, and they are 
used to construct irreducible representations of 𝕊௡.  

The Specht module 𝑆𝜆 is an irreducible submodule of each permutation module Mλ. 

A complete set of irreducible representations is formed from the G-modules of 𝐺 from the 
collection of Specht modules {𝑆𝜆}ఒ . 

A polytabloid is a linear combination of tabloids that is antisymmetric with respect to this 
subgroup: 𝑒௧ = ∑ 𝑠𝑔𝑛(𝜋)𝜋({𝑡}).గ∈஼௧  For example, the polytabloid corresponding to the 
previous example is:  

𝑒௧ =
3 2 5
1 4

− 
1 2 5
3 4

−
3 4 5
1 2

+
1 2 5
3 4

 

Some examples are: for shape λ = n, M(n) corresponds to the trivial one-dimensional 
representation and is irreducible such that M(n) = S(n). for shape λ = n-1, M(n-1,1) contains a 
copy of trivial Specht module S(n), such that 𝑀(௡ିଵ,ଵ)  =  𝑆(௡)⨁𝑆(௡ିଵ,ଵ). This continues until 
the opposite case of 𝑀(ଵ,ଵ,…,ଵ) as the regular representation decomposes into the direct sum 
of  𝑆𝜆s where λ runs over all partitions of n. 

Standard tableaux is defined such that numbers in each row and each column are 
increasing. The standard irreducible representation of 𝕊௡ is defined from the linearly 
independent polytabloids corresponding to the standard tableaux of a given shape. 
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Young’s orthogonal representation (YOR) for 𝕊௡ is simpler than the standard irreducible 
representation, such that the rows of its representation matrices are orthogonal. It is based 
on labelling the dimensions of 𝜌ఒ by standard tableaux of shape λ, without invoking 
polytabloids or the group algebra. It is restricted to the adjacent transpositions 
{𝜏ଵ, 𝜏ଶ, … , 𝜏௡ିଵ}, we can specify the matrix entries of 𝜌ఒ(𝜏௞) explicitly. These matrices were 
proven to be very sparse such that the only non-zero entries in any row, indexed by the 

standard tableau t, are the diagonal entry [𝜌ఒ(𝜏௞)]௧,௧  =
ଵ

ௗ೟(௞,௞ାଵ)
, 𝑑௧(𝑘, 𝑘 + 1) is a special 

signed distance defined on Young tableaux. 

The irreducible representations of GLn are labeled by partitions λ, similar to 𝕊௡. Young 
symmetrizer acts on basis vectors to form equivalence classes corresponding to the 
analogues of polytabloids. This yields the Weyl module that is considered the irreducible 
GLn-module. It has the following structure that shows a subgroup of GLn to be isomorphic to 
GLn−1 as a form of embedding: 

𝑀 = ൦

𝑚ଵ,ଵ ⋯ 𝑚ଵ,௡ିଵ 0

⋮ ⋱ ⋮ 0
𝑚௡ିଵ,ଵ ⋯ 𝑚௡ିଵ,௡ିଵ 0

0 ⋯ 0 1

൪ 

The irreducible representation of GLn takes the form 𝐷஛ can be constructed by a Gelfand-
Tsetlin basis adapted to the tower of subgroups: 𝐺𝐿௡ > 𝐺𝐿௡ିଵ × ℂ∗ > 𝐺𝐿௡ିଶ × (ℂ∗)ଶ >

⋯ > (ℂ∗)௡. 

5.2 Harmonic analysis  

Intuitively, Harmonic Analysis is the study of symmetry originally introduced from music 
theory. According to the Nӧether theorem, behind every conservation principle in physics, 
from conservation of energy to linear and angular momentum, lies a symmetry problem. 
Mahadevan book (Mahadevan, 2008) explains how machine learning algorithms perform 
representation discovery using harmonic analysis utilizing the Fourier Transforms and 
wavelet analysis. The harmonic analysis maps a phenomenon that occurs over space and 
time into a frequency-oriented coordinate system, a change of basis or coordinate systems 
as discussed previously. Representation discovery is enabled by learning from the data a 
(very small) orthogonal basis functions Φ that span a set of invariant subspaces that can 
uniquely generate/reconstruct all the data. These basis functions extract regularities from 
data and summarise them by projecting them into invariant subspaces.  
 
An example of an invariant subspace is the one-dimensional space spanned by an 
eigenvector associated with a specific eigenvalue of a matrix. The choice of the right 
representative basis affects the efficiency of the machine learning, optimization, or search 
algorithms in terms of accuracy and storage requirements. The Fourier analysis provides one 
form of a small set of bases in the frequency domain. The spectral analysis provided by the 
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Laplacian operator analyses data in terms of its projection to orthogonal subspaces to 
identify structures and clusters. The wavelet analysis provides another multiscale basis 
discovery suitable to functions on data with discontinuities. In the context of data on 
groups, the natural choice of subspaces is called the isotypals, which are the irreducible 
subalgebras in the corresponding decomposition, as explained earlier in this chapter. 
Approximation methods can be used to scale basis construction to large graphs, including 
exploiting symmetries in graphs matrix sparsification, low-rank approximation, graph 
partitioning, and Kronecker product approximation. 

The group theoretic definition of Harmonic Analysis is that it is a projection of functions on 
an orthonormal basis. The convolution theorem, in particular, tells us that a mapping or 
function F is special because it corresponds to a decomposition of L(G) (the class of all 
complex-valued functions on G into a sum of spaces closed under convolution (Risi Kondor, 
2008). 

A dataset in the form of a signal can be of various types. The following are some examples: 
 Audio (sound waves that are generated from the vocal tract, musical instruments or 

another audio recording and sensed by the ear),  
 Video (continuous stream of images that are electromagnetic radiation that the eye 

can sense),  
 Physical or mechanical interaction can be viewed as processes where a quantity: air 

pressure, electromagnetic field, physical bodies or their positions are changing as a 
function of time, in which the harmonic analysis tests the response of these 
structures to loads that vary sinusoidally with time to predict if resonance would 
occur. 

 Time-series, or any structures that experience vibrations or cyclic loadings, such as 
bridges, engines and traffic flow problems.  

 

Starting from the number systems, a number representation such as 3 (decimal), III 
(Roman), and 011 (Binary) all represent that same object. The decimal representation uses 
the place-value notation uses basis functions of 1, 10, 100, … and so on. So, number 232 is 
expanded/analysed as 2*(10)2+3*(10)1+2*(10)0 = 232. Each coefficient is 
calculated/synthesized by dividing by the basis function relevant to its place/position, such 
as 232/ (10)2=2 for the third position number. This analysis/synthesis is what learning the 
correct basis can do to a dataset by summarising it and identifying symmetries such that 
storage requirements can be reduced. For example, as we studied in chapter one, all vectors 
are synthesized from their coordinate basis ei. Another example, a vector v describing an 
object such as a function on a graph, is synthesized from basis functions Φ = {ϕଵ, … }, as a 
linear expansion 𝑣 = ∑ 𝛼௜ϕ௜௜ , where each coefficient 𝛼௜ can be viewed as a “measurement” 
of the object. This makes v analysed as linear functionals 𝑣 = {〈𝑣, ϕଵ〉, … , 〈𝑣, ϕ௡〉 }: 𝑉 ×

 𝑉 →  ℝ. This is expressed as linear functions of inner product form: 𝛼௜ =  〈𝑣, 𝜓௜〉, where 
𝜓௜ are the synthesis features, which are the dual basis to ϕ௜. This makes the object 
synthesized as 𝑣ො = ∑ 𝑐௜𝜓௜௜ = ∑ 〈𝑣, ϕ௜〉𝜓௜௜ , where 𝑐௜ are the coefficients of the 
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measurements in the dual space. This equation is defined as a vector's abstract Fourier 
series expansion. It is a full reconstruction when all synthesis coefficients are used in the 
finite dimension. If fewer 𝑐௜s are selected, then this is an approximate reconstruction that 
can be applied using various constraints such as orthogonality, compactness, sparsity, and 
complexity, and these may be in conflict. One basis selection strategy is to use the bases 
with the largest inner product. Another approach is the usual iterative approach to minimise 
the error 𝜖 in reconstruction such that the choice of bases in the summation index i will 
produce a reconstruction 𝑣ො = ∑ 𝑐௜𝜓௜௜ , with ‖𝑣 − ∑ 𝑐௜𝜓௜௜ ‖ ≤ 𝜖. 

Fourier transform performs a change of basis to global basis from the space or time domains 
to the frequency domain. Due to its inability to handle smooth functions with local 
discontinuities and cannot reveal multi-scale regularities, wavelet analysis transforms the 
data from space or time to combined multi-scale space-frequency or time-frequency scales 
using a graph-based approach called diffusion wavelets. Fourier and wavelet analysis can be 
generalised from Euclidean spaces to non-Euclidean spaces defined by graphs, groups, and 
manifolds, enabling new basis discovery techniques to be developed in discrete data and 
search spaces. Abstract harmonic analysis on finite Abelian and non-Abelian groups and its 
applications are further studied in (Mahadevan, 2008) and (Stanković et al., 2005). 

5.2.1 Fourier transforms  

Fourier transforms real-valued functions and decomposes them as linear combinations of 
highly symmetric trigonometric functions. The change of basis of space or time in x (based 
on the nature of the dataset) to the frequency domain k using sines and cosines as basis 
functions is defined as the mapping ℱ: 𝑓 → 𝑓መ. For example, a function f in the space or time 
domain is considered to be composed by summing several sinusoids of different 
frequencies, as shown in Figure 6 for two sine waves. This means any 
periodicity/symmetries in the data are captured as frequency amplitude, and the period is 
the frequency width, providing a compressed representation from which the original space 
or time data can be reconstructed by inverse transform. Example applications are the PCA, 
SVD, as explained in chapter two, and time-series and image-compression using FFT, 
manifold and graph-based methods such as diffusion maps, ISOMAP, LLE, and Laplacian 
eigenmaps (Spectral embedding), among many more in various disciplines. Chapter two, 
accompanying source code, showed a number of algorithms in the 2-way matrix form that 
belong to this class. Ch5.ipynb shows more examples using an audio dataset, applying 
harmonic analysis features extraction methods such as STFT (short-time Fourier transform) 
and Continous and Discrete Wavelet transform and their reconstruction errors and their 
effects on classification models learning time and accuracy. 
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Figure 6: Two sine waves on the right-hand side are summed together to form aA function in the time domain on 
the left-hand side adapted from (Brigham, 1988) 

The Fourier transform is defined as: 

𝑓መ(𝑘) = න 𝑒ି௜ଶగ௞௫𝑓(𝑥)𝑑𝑥 

The Fourier series is a special case of FT, calculated as follows: 

𝑓መ(𝑘) =
1

2𝜋
න 𝑒௜௞௫𝑓(𝑥)𝑑𝑥

ଶగ

଴

 

The inverse FT is defined as the inverse mapping ℱିଵ: 𝑓መ → 𝑓 as follows: 

𝑓(𝑥) = ෍ 𝑓መ(𝑘)𝑒௜௞௫

ஶ

௞ୀିஶ

= න 𝑒ଶగ௜௞௫𝑓መ(𝑘)𝑑𝑘 

This requires that the input function f(x) has some integrability properties for the forward 
transform and continuity properties for the inverse. Working in the new frequency domain 
is equivalent but more compact than in the measurements domain; this includes the inner 
product norm, translation property and convolution property. Parseval’s theorem or 
Plancherel’s theorem proves that the inner products to measure similarities between two 
functions before and after the transform are unitary, such that 〈𝑓. 𝑔〉 = 〈𝑓መ. 𝑔ො〉. The 
translation property means if f translates by t, 𝑓௧(𝑥) = 𝑓([𝑥 − 𝑡]ଶగ), where [. ]௭ means 
modulo z, then 𝑓መ௧(𝑘) = 𝑒ଶగ௜௧௞௫𝑓መ(𝑘) . A shift by 𝛼 in the space or time domain is 
multiplication by exp (−𝑖𝛼𝑘) in the frequency domain 𝑓(𝑥 − 𝛼) = 𝑓መ(𝑘)𝑒ି௜ఈ௞. A scaling by 
𝛼 in the space or time domain is scaling by the reciprocal of 𝛼 in the frequency domain 

𝑓(𝛼𝑥) =
ଵ

|ఈ|
𝑓መ ቀ

௞

ఈ
ቁ. This is extended to the convolution theorem such that the convolution of 

f(x) by g(x) in the space or time domain is just a multiplication of their frequency domain 
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transforms: ℱ(𝑓 ∗ 𝑔)(𝑘) = 𝑓መ(𝑘) · 𝑔ො(𝑘). Also, the derivative of a function in the time 
domain is equivalent to multiplying the frequency domain transform by the frequency value 

raised to the power of the order of the derivative: ቀ ௗ

ௗ௫
ቁ

௠
𝑓(𝑥) ⟹ (𝑖𝑘)௠𝑓መ(𝑘). 

The FT is essential to the study of partial differential equations because when the underlying 
space has a natural differential structure, the FT relates to that in a canonical way: on the 
unit circle (parametrised by angle) we have 𝜕𝑓෢ (𝑘) =  𝑖𝑘  𝑓መ(𝑘), while on the real line 
𝜕𝑓෢ (𝑘) = 2𝜋𝑖𝑘 𝑓መ(𝑘).  

The group theoretic FT is based on the fact that the domain of f is a group G, such that  𝕋 =

ℝ/ℤ, ℝ and ℤ௡,  these factors are the irreducible characters of G. This redefines FT as: 

𝑓መ(𝜒) = ℱ(𝑓)(𝜒) = ∫ 𝜒(𝑥)𝑓(𝑥)𝑑𝜇(𝑥)
ீ

, where χ ranges over the characters of G, and μ is 
the Haar measure on G. Since the irreducible characters of an LCA group form a dual group 
𝐺෠, the inverse transform is given by a similar integral over the dual group: 𝑓(𝜒) =

ℱିଵ൫𝑓መ൯(𝜒) = ∫ 𝜒(𝑥ିଵ)𝑓መ(𝑥)𝑑𝜇̂(𝑥)෠ீ . This extends the harmonic analysis to LCA groups 
while maintaining all its properties by taking advantage of the fact that the irreducible 
characters of an Abelian group form an orthonormal basis for the group algebra. Using 
group and representation theory properties, a representation of f(x) can be restricted to 
𝜌(𝑥) such that the FT can be defined as 𝑓መ(𝜌) = ∑ 𝑓(𝑥)𝜌(𝑥),௫∈ீ 𝜌 ∈ ℛ, and the inverse is 

𝑓(𝑥) =
ଵ

|ீ|
∑ 𝑑ఘ𝑡𝑟ൣ𝑓መ(𝜌)𝜌(𝑥ିଵ)൧,ఘ∈ℛ .The derivation is provided in (Risi Kondor, 2008). The 

convolution of a group is defined as (𝑓 ∗ 𝑔)(𝑥) = ∑ 𝑓(𝑥𝑦ିଵ)𝑔(𝑦)௬∈ீ  , satisfying the 
convolution theorem 𝑓 ∗ 𝑔෣ (𝜌)  = 𝑓መ(𝜌)𝑔ො(𝜌), and consequently also the left- and right-
translation properties 𝑓መ௧(𝜌) = 𝜌(𝑡)𝑓መ(𝜌) and 𝑓መ(௧)(𝜌) = 𝑓መ(𝜌)𝜌(𝑡).  

 
An example application of Fourier analysis on groups is defined as studying the effect of 
sunlight(s), weed killer(w) and fertilizer(r) on the yield of wheat measured by 𝑓(𝑠, 𝑤, 𝑟). 
These three variables are assumed binary (high/low) or (+,-) for simplification and to reduce 
to a 2k factorial design class of problems. For 3 variables, there are 23 possible permutations 
f+++, f++−, f+−+, … etc. The different linear combinations of these variables contain the zeroth 
order that computes the mean wheat yield independent of the effects of the variables, 
producing a grand mean as: 

𝜇 =
1

8
(𝑓ାାା + 𝑓ାାି +  𝑓ାିା + 𝑓ାିି +  𝑓 ାା +  𝑓 ାି + 𝑓 ିା + 𝑓 ିି ) 

First-order effects consider each factor in isolation and compute its mean yield. For 
example, the mean for the first factor (sunlight/s) is defined as: 

𝜇௦ =
1

4
(𝑓ାାା + 𝑓ାାି + 𝑓ାିା + 𝑓ାିି) −

1

4
(𝑓 ାା + 𝑓 ାି + 𝑓 ିା + 𝑓 ିି ) 
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Similar first-order effects are computed for the other two variables. A second-order effects 
measure the different combination of two variables' effects on the wheat yield producing a 
mean relative to the two variables specified. For example, the mean for the combined effect 
of the first and second variables is defined as follows: 

𝜇௦௪ =
1

2
൬𝑓ାାା + 𝑓ାାି) −

1

2
( 𝑓ାିା + 𝑓ାିି൰ −

1

2
(𝑓 ାା +  𝑓 ାି) +

1

2
(𝑓 ିା + 𝑓 ିି ) 

Notice that we add the partial means when both variables are positive or negative and 
subtract when they are different. The remaining two combinations of 2 variables can be 
computed similarly. The final third-order measures the effects of all variables combined on 
the wheat yield, producing the mean: 

𝜇௦௪௥ =
1

8
(𝑓ାାା − 𝑓ାାି + 𝑓ାିି − 𝑓ାିା +  𝑓 ାି −  𝑓 ାା + 𝑓 ିା − 𝑓 ିି ) 

Notice the rearrangement of the (+/-)combinations and subtractions when two variables are 
negatives (low). These three orders of effects and their variable combinations give a 
complete representation of the data, from which the original data can be reconstructed 
from them. This representation can be defined in a transform matrix form denoted ℤଶ

ଷ as 
follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜇
𝜇௦

𝜇௪

𝜇௥

𝜇௦௪

𝜇௦௥

𝜇௪௥

𝜇௦௪௥⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑓ାାା

𝑓ାାି

𝑓ାିା

𝑓ାିି

𝑓 ାା

𝑓 ାି

𝑓 ିା

𝑓 ିି⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

The vector of μ’s is the Fourier transform of f over this group. The specific subindices can be 
transformed to index k as follows: 𝜇௞ = ∑ 𝜒௞(𝑥)𝑓(𝑥)௫∈ℤమ

య , such that the order of k 

establishes an isomorphism 𝑥 → 𝜒௞ from ℤଶ
ଷ to its dual, with the identity being (+,+,+), the 

norm on ℤଶ
ଷ is the count of negative components mapped to the dual. The zeroth-order 

effect will have norm 0; the first-order effects will have norm 1, …, etc. This is similar to 
analyzing functions on ℝ௡ in terms of a hierarchy of Fourier components of increasing 
frequency. Check another Symmetric group example in (Risi Kondor, 2008). 

Fourier transform connects continuous mathematics, such as linear differential equations, 
to concepts in discrete mathematics, such as linear algebra and matrix theory, using the 
principle of diagonalisation. Diagonalising continuous spaces using a discrete version of the 
“Laplacian” operator yields a discrete FT. This operator is commonly called the graph 
Laplacian and is explained below.  
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Other FT algorithms are defined for various applications and for computational efficiencies, 
such as the Fast Fourier Transform (FFT), which reduces the computation from O(n2) to O(n 
log2 n), where n is the number of data samples in f(x). A C++ implementation of FFT on the 
symmetric group using the Clausen FFT algorithm is provided by the author of (Risi Kondor, 
2008) and is available in https://people.cs.uchicago.edu/~risi/SnOB/.   

5.2.2 Laplace on functions and graphs 

The Laplace operator is another tool for identifying symmetries. A Riemannian manifold is 
represented using an undirected graph of the points in the manifold. The graph Laplacian (as 
defined below) is of interest in several areas, including dimensionality reduction, Markov 
processes, spectral graph theory, and web page ranking.  

In chapter three, the continuous Laplace operator was provided using the divergence 
operator of the gradient of a function and the trace of the Hessian matrix of the function, 

which is for a function of two variables is ఋ
మ௙

ఋ௫మ +
ఋమ௙

ఋ௬మ = 𝑡𝑟(𝐻(𝑓)), which is invariant to 

coordinate/basis change and measures function curvature. For a given graph G = (V, E, W), 
where |V| = n nodes, E is the edges list, an edge between nodes (u, v) ∈ E, edges’ weights 
are given in the W matrix. Another form is to merge E & W and use adjacency matrix A, 
which includes either 1 or 0 in unweighted graphs or the weight value in the case of 
weighted graphs. Also, for directed graphs, the weight or the adjacency can be non-
symmetric as the existence of (u, v) edge does not imply the existence of a (v, u) edge. For u 
∼ v, meaning an (undirected) edge between u and v, the degree of u is defined to be 
𝑑(𝑢)  =  ∑ 𝑤(𝑢, 𝑣)௨∼௩  . D will denote the diagonal matrix defined by Duu = d(u), as the row 
sums of W or A. Whether the graph is defined with an adjacency list or adjacent matrix, the 
discrete version of the Laplace operator can be defined as L = D-W or L = D-A. The 
normalized Laplacian ℒ = 𝐷ିଵ/ଶ(𝐷 − 𝑊)𝐷ିଵ/ଶ . The Laplacian is an operator on the space 
of functions 𝐹: 𝑉 → ℝ on a graph, such that 𝐿𝑓(𝑢)  =  ∑ (𝑓(𝑢) −  𝑓(𝑣))௨∼௩  𝑤(𝑢, 𝑣), 
replacing the continuous derivatives with finite differences.  

The fundamental property of the graph Laplacian is that projections of functions on the 
eigenspace of the Laplacian produce the smoothest global approximation respecting the 
underlying graph topology. This constructs the basis functions that best capture the graphs’ 
structure due to the close Laplacian connection with classical Fourier analysis, the 
continuous Laplacian on manifolds, and random walks. Whether the normalised Laplacian is 
used or not, both have non-negative eigenvalues, with corresponding eigenfunctions that 
can be used as an orthonormal basis of smooth global functions to approximate any 
function on a graph. The projection of a function f on the smallest set S of the indices to 
produce the smallest acceptable error onto the top k eigenvectors corresponding to the 
smallest eigenvalues of the Laplacian is the smoothest approximation to f. The second 
eigenvector is the Fiedler eigenvector, which is the eigenvector associated with the smallest 
nonzero eigenvalue of the Laplacian matrix and is generally used to partition the graph. It 
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characterises the sensitivity or a bottleneck in a graph that can be used in clustering or 
partitioning the graph. The basis functions are then computed by diagonalizing a Laplacian/ 
diffusion operator on the space of functions on the graph. 

The Laplace operator can be calculated from the Fourier analysis by taking the Laplacian and 
finding its eigenvectors. It can also be calculated by doing a multi-scale wavelet analysis, 
which takes the powers of the random walk Laplacian and builds multi-scale representations 
at different spatial and temporal levels. 

Computing the Laplacian on a group, we turn the group into an undirected graph and 
defines the neighbourliness of x∼y, denoting the fact that x, y ∈ G are neighbours, and 
letting dx denote the number of edges incident on x, then the graph Laplacian as the 
|G|×|G| matrix: 

∆௫,௬= ൝

1, 𝑖𝑓 x ∼ y
−𝑑𝑥, 𝑖𝑓 x = y
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The diffusion kernels generalise the Gaussian kernels induced by captured local similarities 
by the Laplacian while regularising the function. The diffusion kernel of the above Laplacian 
is: 

𝑘(𝑥, 𝑦) = ൣ𝑒ஒ∆൧
௫,௬

= ቂ lim
௡→ஶ

ቀ1 +
ஒ∆

௡
ቁ

௡
ቃ

௫,௬
. 

The Laplacian on functions on G is defined by (∆𝑓)(𝑥)  = ∑ ∆௫,௬𝑓(𝑦)௬∈ீ  , the kernel is 

defined as: 〈𝑓, ∆𝑓 〉 = −
ଵ

ଶ
∑ (𝑓(𝑥) − 𝑓(𝑦))ଵ

୶∼୷ , such that −∆ measures how f violates the 
graph structure. Computing the Laplacian eigenvalues 𝜆ଵ, … , 𝜆|ீ| and eigenvectors 
𝑣ଵ, … , 𝑣|ீ|, we can express the kernel as:  

𝐾 = ෍ 𝑒ஒఒ೔

|ீ|

௜ୀଵ

𝑣ଵ𝑣௜
் 

And the discrete regularisation operator as: 

Υ = ෍ 𝑒ஒఒ೔/ଶ

|ீ|

௜ୀଵ

𝑣ଵ𝑣௜
் 

This diffusion kernel penalizes functions according to how much energy they have in the 
“high frequency” modes on the graph, i.e., the ones that violate many edges. For more 
examples and discussion of various applications, check (Risi Kondor, 2008). 
 
The Hodge theorem states that the eigenfunctions of the Laplacian on a manifold provide a 
complete discrete basis for all square-integrable functions on a continuous manifold. The 
key problem in extending eigenfunctions to continuous spaces is how to extend sample 
values to new unobserved values: out-of-sample extension. Nystrӧm interpolation provides 
a solution to the out-of-sample extension. 

Spectral data embedding, as shown in chapter two’s source code examples 
(Maniflods.ipynb),  clustering, and edge detections, are general applications of the 
Laplacian. Scipy python implements the graph laplacian in their compressed sparse graph 



CHAPTER 5 

40 

routines package, such as “scipy.sparse.csgraph.laplacian” function. OpenCV also 
implements the function. Both examples are demonstrated in ch5.ipynb accompanying 
source code examples. 

5.2.3 Wavelet Analysis 

Fourier Analysis use global basis functions of sines and cosines. Hence, they can transform 
stationary signals only. Stationary signals' amplitude and frequency do not change over 
time. Short Short-Time Fourier Transform (STFT) divide the time series into windows and 
apply FT on each window to identify its frequency amplitude. This produces uncertainties on 
the overlapping window sizes and variable frequencies within. Consequently, they can not 
adequately handle local discontinuous functions and multi-scale regularities. Instead of 
mapping space-time x to the frequency domain k, the wavelet analysis combines time and 
space into multi-scale/multi-resolution time-frequency or space-frequency of varying 
granularities. 

Furthermore, the literature proposes variable basis functions called wavelets instead of 
using trigonometry basis functions. Also, a concept of dilation equations using a diffusion 
operator on the graph is used instead of diagonalisation and differential equations used in 
FT. The random walk method is used to construct the basis elements at multiple levels of 
spatial and temporal abstractions by constructing each level by dilating/scaling the ones at 
the previous level. This constructs a hierarchy of vector spaces and two sets of basis 
functions called scaling functions representing coarser views and wavelets representing the 
finer detailed view. The computation cost is reduced using matrix compression, sampling, 
and domain knowledge concepts. 

In convolution, a filter (matrix) is multiplied by a region in a larger data matrix to identify the 
presence of the object of the filter content in this region, then slides over the remaining 
temporal or spatial regions to provide translation invariance. Similarly, different scales of 
the different wavelets are convoluted over the time or space data series to identify the 
location of the wavelet presence is found. Then all are summed up to identify the multi-
scale/multi-resolution combined frequency-time or frequency-space domain. 

The Haar basis is the earliest, simplest, and most adopted example of a wavelet basis. For a 
one-dimensional x variable, a decimal value of 7 can be decomposed using the Haar basis for 
1D as: 

7 =  4𝜙(𝑥) + 3𝜓(𝑥)  

Such that 𝜙(𝑥) = ൝

1 ,        𝑓𝑜𝑟 0 ≤ 𝑥 < 1/2  
−1,            𝑓𝑜𝑟 1/2 ≤ 𝑥 < 1 

0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝜓(𝑥) = ቄ

1, 0 ≤ 𝑥 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, are the mother 

scale function and mother wavelet function, respectively. Other basis functions could be 
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derived by scaling and translating them. The process is to repeat this average & difference 
process to obtain one scale coefficient and N-1 detail coefficients for N signals.  

We can do this using the linear mapping transformation matrix from Vector space V to 
vector space W, as explained in chapter one 𝑇: 𝑉 → 𝑊, also called operator. To make the 
mapping apply basis changes from 𝐵ଵ = {𝑢ଵ, … , 𝑢௡}to 𝐵ଶ = {𝑣ଵ, … 𝑣௡}, it is denoted [𝑇]஻భ

஻మ. 
Given a vector, a in V expressed as 𝑎 = 𝑎ଵ𝑢ଵ + ⋯ + 𝑎௡𝑢௡, a transformation to vector b in 
W would include the basis transformation as 𝑏 = 𝑏ଵ𝑇(𝑢ଵ) + ⋯ +  𝑏௡𝑇(𝑢௡), such that 
𝑇(𝑢௜) = 𝑢௜

ᇱ, and 𝑢௜
ᇱ = ∑ 𝛼ଵ𝑣ଵ

௠
௜ୀଵ  is the direct sum of vectors, in case the dimensionality of 

the input space n is different from the dimensionality of the output space m, 𝛼௜ are the 
transformation coefficients. For example, Haar basis for ℝସ is defined as: 

 𝑒௛భ
= ൦

1
1
1
1

൪, 𝑒௛మ
= ൦

1
1

−1
−1

൪, 𝑒௛య
= ൦

1
−1
0
0

൪, 𝑒௛ర
= ൦

0
0
1

−1

൪ 

The transformation matrix from the Haar unit basis H to the identity unit basis U in ℝସ,  

[𝐼]ு
௎ ൦

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

൪ and the inverse ([𝐼]ு
௎)ିଵ = [𝐼]௎

ு =

൦

0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.5 −0.5 0 0
0 0 0.5 −0.5

൪ 

The rows of the inverse of the Haar basis change matrix are the dual basis of the Haar basis, 
which are the scaled (÷0.25) of the original Haar basis because they are orthogonal. These 
bases are more efficient than the unit vector basis. For example, given a vector v in ℝସ as 
[5, 4.5, −4, −5], can be represented using a linear combination of the Haar basis as: 

𝑣ு = ([𝐼]ு
௎)ିଵ𝑣௎ ൦

0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.5 −0.5 0 0
0 0 0.5 −0.5

൪ [5 4.5 −4 −5] = ൦

0.125
4.625
0.25
0.5

൪ 

One basis vector, the second of 4.625, dominates the rest, and we can construct a 

reasonable approximation of this vector to get the approximation 𝑣 = ൦

5
4.5
−4
−5

൪ ≅

4.625 ൦

1
1

−1
−1

൪ = ൦

4.625
4.625

−4.625
−4.625

൪, where the error in approximation is around 0.8. Also, this basis 
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transformation allows decomposition into the product of smaller matrices, and its inverse is 
its transpose because it is orthogonal (Mahadevan, 2008). 

Other wavelet basis functions are introduced in the literature to choose from, such as db4, 
db16, coif1, sym4, sym8, bior1.3, and bior3.1. Scipy.signal Python package has continuous 
wave transform (cwt) using wavelets Morlet and Ricker. PyWavelets is another Python 
package that implements more wavelets as rbio, dmey, gaus, mexh, morl, cgau, shan, fbsp, 
cmor. Also, diffusion wavelet bases are adapted to the geometry of a graph and can be 
learned adaptively from sampling a data set or a state space. A reader can research how 
each one is designed and what useful properties they offer to be suitable for a particular 
application. Ch5.ipynb accompanying source code examples include some of these wavelet 
functions to compare to stft feature representation method and their effects on 
reconstruction error, classification learning time, and accuracy. The models presented are 
very simple to introduce the idea, but each model can be enhanced in many other ways to 
achieve higher accuracy and less convergence time. 

5.3 Learning on groups  

As explained in chapter one, estimating a mapping function 𝑓: 𝜒 → Υ between the input 
space 𝜒, and the output space Υ is the aim of machine learning (ML) algorithms. Chapter 
two introduced various input vector space mapping 𝑓: 𝜒 → 𝜒෤ learning to estimate the 
transformation matrix between both spaces aiming at reducing the dimensionality. ML 
algorithms generalise the mapping from input to output for prediction, regression, and 
other objectives. Most ML algorithms are based on a probabilistic framework assuming a 
single probability distribution D on 𝜒 × Υ in which both training and testing examples are 
drawn, each sample entity being statistically independent of the others. In predictive 
models such as the frequentist probability methods and supervised machine learning, the 
distribution is not important to be understood. The Bayesian methods, on the other hand, 
expect the distribution to be pre-defined and parameterised to the algorithm, to build a 
generative model that estimates the spaces of 𝜒 × Υ. In both cases, an ML algorithm would 
learn a mapping function 𝑓: 𝜒 → Υ to predict a y for a given test x, from a set of functions 
known as a hypothesis set. The training phase, given a loss function 𝐿 defined over the 
space: 𝐿: Υ ×  Υ → ℝ, aims to minimise the expected value over the distribution D of the 
input and output spaces min 𝐸(௫,௬)~஽[𝐿(f(𝑥), y]. The various machine learning algorithms 

parametrise the loss function to use, the distribution of the input and output spaces if 
required by the algorithm, and other detailed requirements to accommodate different 
classes of problems.   

If the model overfits the coefficients of the mapping function, then a regularisation 
parameterλwill attempt to reduce the values of the coefficients, and the regularizer Ω[𝑓] 
measures the smoothness of the function. On the other side, Kernel methods are based on 
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reproducing kernel Hilbert spaces. This class of algorithms belong to the set  Ω[𝑓] = 〈𝑓, 𝑓〉 
for some appropriately defined inner product between hypotheses, and trade-off the 
smoothness of the function and performance of the model. 

5.3.1 Hilbert space learning algorithms  

Chapter two introduced the kernel methods for SVM and stated that the data need to be 
mapped to the Hilbert space of infinite dimensions such that a non-linearly separable 
dataset can become linearly separable in the higher dimension. An exhaustive search on the 
best higher dimension would grow to the largest dimensional space is ℝ|ఞ|, where |𝜒|is the 
cardinality of input space 𝜒. This can be further reduced to ℝ|௪|, where |𝑤| is the cardinality 
of the parameters to learn w, for a reduced hypothesis set.  Kernel functions even reduce 
this space using inner products between input space samples. 
 
The previous definition is good enough to use these methods properly. Since this book deep 
dives, to an extent, into the new layer of abstract algebra and how it has advanced 
computer science algorithms in the past three decades, this section will explain further how 
to define an inner product on Hilbert spaces.  
Remember from chapter one that a scalar product on ℝ௡ is defined as (𝑣|𝑤) = ∑ 𝑣௜𝑤௜௡

௜ୀଵ . 
A Hermitian scalar product on a function such as L2([−a,a]) on ℂ௡,  extends the definition of 
the scalar product on ℝ௡, to be defined as (𝑣|𝑤) = ∑ 𝑣̅௜𝑤௜௡

௜ୀଵ , where the bar on v denotes 
complex conjugation (Hermiticity). L2([−a,a]) is a square-integrable complex-valued functions 

on an interval [-a, a] with expansion 𝑓 = ∑ 𝑐௡
ஶ
௡ୀିஶ 𝑒௜

೙ഏೣ
ೌ . This is known as the Fourier series 

of f, and 𝑐௡, are the Fourier coefficients, which are the components of the vector f in the 

basis ൜𝑒௜
೙ഏೣ

ೌ   ൠ
௡∈ℤ

. L2([−a,a]) structure is an infinite-dimensional Hilbert space because the 

basis allows for infinite linear combinations.  

Given f, g ∈ L2([−a,a]), (𝑓 |𝑔)  ≡
ଵ

ଶ௔
∫ 𝑓̅𝑔𝑑𝑥

௔

ି௔
, where a bar on f denotes hermiticity again, 

defines the inner product (.|.) on L2([−a,a]). This inner product turns L2([−a,a]) to a Hilbert 
space. A Hilbert space H has the set {ei}⊂H as orthonormal basis if (ei|f)=0, ∀i ⇒ f = 0, such 

as ൜𝑒௜
೙ഏೣ

ೌ   ൠ
௡∈ℤ

. L2([−a,a]) is the set of all expressions of the expansion form defined above, 

and when the following condition is satisfied: 

1

2𝑎
න |𝑓|ଶ𝑑𝑥

௔

ି௔

= ෍ |𝑐௡|ଶ

ஶ

௡ୀିஶ

< ∞ 

L2([−a,a]) then defines the infinite-dimensional Hilbert spaces. a basis for a Hilbert space is 
an infinite set whose infinite linear combinations, together with some suitable convergence 
condition, form the entire vector space. Dealing with spatial degrees of freedom, as 
opposed to ‘internal’ degrees of freedom like spin, Hilbert spaces like L2([−a,a]) and 𝐿ଶ(ℝ) 
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are often encountered, which are most conveniently described by ‘basis’ vectors which are 
eigenvectors of either the position operator 𝑥ො or the momentum operator 𝑝̂. 

There is an oft-unwritten rule that one should take the tensor product of the corresponding 
Hilbert spaces to add degrees of freedom. For example, by adding an additional translational 
degree of freedom for a spinless particle constrained to move in one x dimension; the 
quantum mechanical Hilbert space for this system is 𝐿ଶ(ℝ) with basis {|𝑥⟩}௫∈ℝ (this is the 
ket notation explained in chapter one, which means x is a vector in vector space X) adding a 
second y dimension with its own Hilbert space 𝐿ଶ(ℝ) with basis {|𝑦}௬∈ℝ, then the particle 
can move in these two dimensions in a Hilbert space defined by the dot product of each 
individual Hilbert space, 𝐿ଶ(ℝ) ⊗ 𝐿ଶ(ℝ) with basis {|𝑥⟩ ⊗ |𝑦⟩}௫,௬∈ℝ and so forth for higher 
dimensions. Adding spinning requires adding basis in the ℂଷ space  (Jeevanjee, 2011). 
 
Hilbert space is formally defined as a complete linear inner product space. Starting from the 
inner product on a vector space V over ℝ, it is defined as a function 𝑉 × 𝑉 → ℝ, denoted 
〈𝑣, 𝑤〉, satisfying: 
〈𝑢 + 𝑣, 𝑤〉 = 〈𝑢, 𝑤〉 + 〈𝑣, 𝑤〉, 
〈𝛼𝑢, 𝑣〉  =  𝛼〈𝑢, 𝑣〉, 
〈𝑢, 𝑣〉  =  〈𝑣, 𝑢〉, 
〈𝑢, 𝑢〉  ≥  0 with equality only when 𝑢 = 0௏, for all 𝑢, 𝑣, 𝑤 ∈  𝑉 and 𝛼 ∈  𝔽. Such an inner 

product gives rise to the norm ‖𝑢‖ = ඥ〈𝑢, 𝑢〉, and this provides V with a topology and a 
distance metric 𝑑(𝑥, 𝑥ᇱ) = ‖𝑥 − 𝑥ᇱ‖.  

A sequence 𝑎ଵ, 𝑎ଶ, . .. in a metric space is said to converge to 𝑎 ∈ 𝑀 if lim
௜→ஶ

𝑑(𝑎௜, 𝑎) = 0 and 

is called a Cauchy sequence if lim
୫୧୬(୍,୨)→ஶ

𝑑൫𝑎௜ , 𝑎௝൯ = 0. The space M is said to be a complete 

metric space if every Cauchy sequence in M converges to some 𝑎 ∈ 𝑀. 

A Hilbert space is a vector space ℋ that is a complete metric space because of the inner 
product-induced norm. The Hilbert space formalises the presence of three different but 
closely related structures: the vector space, the inner product, and the topology. A Hilbert 
space is defined over any field, not only ℝ, and can be finite or infinite dimensional. Any 
finite Hilbert space is isomorphic to the Euclidean space ℝ௡. In the infinite-dimensional, we 
can define a basis for ℋ, and if we label the basis vectors with elements of some countably 
or uncountably infinite set S, we can expand any 𝑣 ∈ ℋ as: 

𝑣 = ෍ 𝛼௦𝑒௦

௦∈ௌ

, 𝛼௦ ∈  ℝ 

This makes the Hilbert space defines a space of functions 𝑣(𝑠) = 𝛼௦, in which all linear 
algebra carries over to the infinite dimension. The Kernel functions defined on them are 
computationally efficient. As defined in chapter two, a kernel function is 𝑘(𝑥, 𝑥ᇱ) =

 Φ(𝑥), Φ(𝑥ᇱ). In chapter three, a pull-back is defined as moving a differential form from one 
manifold to another manifold. This is clearly what the kernel function k is doing, moving the 
metric from the  Hilbert space inner product to the 𝜒 space. This makes the kernel function 



CHAPTER 5  

45 

𝑘: 𝜒 × 𝜒 → ℝ symmetric, 𝑘(𝑥, 𝑥ᇱ) = 𝑘(𝑥ᇱ, 𝑥), with any linear combination 𝑓 =

∑ 𝛼௜Φ(𝑥௜)௠
௜ୀଵ , 𝛼ଵ, … , 𝛼௠ ∈  ℝ, 𝑥ଵ, … , 𝑥௠ ∈  𝜒, must satisfy 〈𝑓, 𝑓〉 =

∑ ∑ 𝛼௜𝛼௝〈Φ(𝑥௜), Φ(𝑥௝)〉௠
௝ୀଵ ≥ 0௠

௜ୀଵ , equivalent to ∑ ∑ 𝛼௜𝛼௝〈𝑥௜, 𝑥௝〉௠
௝ୀଵ ≥ 0௠

௜ୀଵ . 

This adds the definition of positive as well and semi-definite because of accepting equal or 
greater than. Adding also the condition ∑ 𝛼௜ = 0௡

௜ୀଵ , makes this a symmetric conditionally 
positive semi-definite. These conditions are sufficient to have a Hilbert space corresponding 
to the kernel function k used to characterise the input space.  

The steps below do the construction of reproducing kernel Hilbert space (RKHS) to 
characterise the function space corresponding to a given k as stated in (Risi Kondor, 2008): 

1. Define the functions 𝑘௫(·) = 𝑘(𝑥,·), and form a vector space V with basis labelled by 
{𝑘௫}௫∈ఞ. 

2. Define an inner product between basis vectors by 〈𝑘௫ , 𝑘௫ᇲ〉  =  𝑘(𝑥, 𝑥ᇱ) and extend 
this by linearity to the rest of V. This set of functions taken as basis will span the 
linear combinations of 𝑘௫′𝑠. 

3. Finally, complete V to ℋ by adjoining to it the limits of all Cauchy sequences and 
extending the inner product by continuity. Remember, a Cauchy sequence is an 
infinite sequence in which successive terms tend to get closer together and 
converge to a limit. This can reach the largest dimension ℝ|ఞ| but on a linearly 
independent set. 
 

The representer theorem of Kimeldorf and Wahba (1971) states that given 𝜒 be an input 
space, Υ an output space, 𝑇 =  {(𝑥௜, 𝑦௜)}௜ୀଵ

௠   a training set, 𝐿: Υ × Υ →  ℝ a loss function, 
and ℋ a reproducing kernel Hilbert space induced by some positive definite kernel 
𝑘: 𝜒 × 𝜒 → ℝ. Then the minimizer 𝑓  of any regularized empirical risk (loss on the training 
data) functional of the from 𝑅௥௘௚[𝑓] =

ଵ

௠
∑ 𝐿(𝑓(𝑥௜), 𝑦௜))  +  𝜆௠

௜ୀଵ  ‖𝑓‖ଶ   
Such that the regularizer 𝛺[𝑓] = 〈𝑓, 𝑓〉 , identify 𝛺[𝑓] with the squared Hilbert space norm 
‖𝑓‖ଶ = 〈𝑓, 𝑓〉, with regularisation parameter λ>0 is expressible as a linear combination 
𝑓 (𝑥) = ∑ 𝛼௜𝑘௫೔

(𝑥)௠
௜ୀଵ , 𝛼௜  ∈  ℝ. Some machine learning algorithms raises ‖𝑓‖ to a 

different power than 2, but 2 is sufficient according to the representer theorem. 
 

This theorem reduces searching the large space ℋ to just finding the optimal values of the 
m coefficients 𝛼ଵ, … , 𝛼௠. This is a non-parametric model because it does not attempt to fit a 
fixed model with a finite number of pre-defined parameters. The literature has various 
kernel functions, and continuous research will present more in the future. A number of 
them are introduced in chapter two, and more are discussed in (Risi Kondor, 2008). Each 
one of them applies a different regularisation scheme. The most popular kernel on ℝ௡, the 
Gaussian (RBF) kernel discussed in chapter two, contains a length scale parameter (or 
variance parameter) σ. Letting 𝑓መ denote the Fourier transform of 𝑓 and Υ෡ the frequency 
space regularization operator Υ෡𝑓መ = Υ𝑓෢ , that was shown that ൫Υ෡𝑓መ൯(𝜔) = 𝑒|ఠ|మ஢మ

𝑓መ(𝜔) 
penalises high-frequency components in 𝑓 by a factor exponential in |𝜔|ଶ, providing natural 
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regularisation. An alternative description of Υ in terms of derivatives of 𝑓 is ‖Υ𝑓‖ி
ଶ =

∫ ∑
஢మ೔

௜!ଶ೙
ஶ
௜ୀ଴ఞ

ฮ൫𝒪௜𝑓൯(𝑥)ฮ
௅మ

ଶ
𝑑𝑥, where for i even 𝒪௜ = ∆

೔

మ , and for i odd 𝒪௜ = ∇∆
೔షభ

మ , and ∆ is 

the Laplacian operator explained previously. This again penalises functions which have a 
large amount of energy in their high order derivatives, i.e. they are not smooth.  For more 
discussions on how the choice of kernels and loss function define various machine learning 
algorithms such as Gaussian Processes, SVM, and Kernels for different learning problems, 
such as learning symmetries in data and translation invariance as in convolution neural 
networks (CNN) expressed using group theory, and learning permutations check (Risi 
Kondor, 2008).  
 
These kernel machines, aka neural networks, build up the hypothesis set by going through 
the dataset in iterations to minimise the empirical loss. Their ability to generalise to unseen 
data as well is justified by the kernel function choice. 

5.4 Invariance  

In machine learning, data, for example, images must be represented individually in 
translation- rotation- and scale-invariant forms. Learning the representation invariant 
subspace requires a change of bases from the measurement basis to the transformation 
invariant basis. A vector is covariant if its components change proportional to the change of 
the base after a change of basis. It is a contravariant vector when its components change 
inversely proportional to the change in the basis. Representation discovery is the process of 
identifying an invariant subspace under some mapping operator T. A subspace V is invariant 
under T, when every vector v in V, when the operator is applied on it yields a vector w, it 
𝑇𝑣−> 𝑤, such that w also is in V. Invariant subspaces are useful since they enable 
irreducible representations of linear mappings. As explained in the wavelet section, a 
transformation operator T in a given subspace 𝜒 is denoted  [𝑇]ఞ = 𝑇|ఞ. In previous 
chapters, we studied matrix and tensor decompositions that reduce a matrix/tensor into a 
linear sum of simpler rank-one matrices/tensors, which are essentially just the outer 
product of these simpler structures. For example, combining the Haar basis with its dual 
basis, construct a set of invariant subspaces that results in a direct sum decomposition of 
the original vector space V. Given the same vector used before [𝑣]௎  =  [5, 4.5, −4, −5]், 
we can decompose this vector as the sum of four vectors, each produced from the outer 
product of the Haar basis vectors with their corresponding dual basis vectors multiplied by 
the invariant rank-one Haar representation [𝑣]ு:  

[𝑣]௎ = ൦

5
4.5
−4
−5

൪ = ൦

0.125
0.125
0.125
0.125

൪ + ൦

4.625
4.625

−4.625
−4.625

൪ + ൦

0.25
−0.25

0
0

൪ + ൦

0
0

0.5
−0.5

൪ 

 
There are many methods to construct invariant subspaces, such as eigenspace 
decomposition in which the space spanned by the eigenvector is an invariant space to the 
input matrix, QR Decomposition and Gram–Schmidt Orthogonalization, and SVD. The 
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mapping to the Hilbert space, using the inner product norm, is a transformation to a 
coordinate-free or infinite dimensional invariant space. The abstract Fourier expansion 𝑣ො =
= ∑ 〈𝑣, ϕ௜〉𝜓௜௜ , where ϕ௜ represents the analysis basis space and 𝜓௜ represents the synthesis 
basis space, generalises and projects to general Hilbert space, and constructs unknown 
vectors in the invariant space from known measurements in the input space. The 
Reproducing Kernel Hilbert Space (RKHS) is also a special class of the Hilbert space that uses 
a reproducing kernel function. The kernels induce Gram symmetric matrices G on a given set 
of samples,   

𝐺(ϕଵ, . . . , ϕ௡)  = ൥
〈ϕଵ, ϕଵ〉 ⋯ 〈ϕ௡, ϕଵ〉

⋮ ⋱ ⋮
〈ϕଵ, ϕ௡〉 ⋯ 〈ϕ௡, ϕ௡〉

൩ 

 
The Gram matrices enable extending basis functions computed on a set of samples in α 
basis to new points 𝛽 basis, such as: 𝐺(ϕଵ, . . . , ϕ௡) 𝛼 =  𝛽(Mahadevan, 2008). 
 
As discussed earlier in this chapter, invariance can be captured in groups since group 
captures symmetries. The translation property of the Fourier Transform is explained earlier 
on groups and their representations as the left- and right-translation properties: 𝑓መ௧(𝜌) =

𝜌(𝑡)𝑓መ(𝜌) and 𝑓መ(௧)(𝜌) = 𝑓መ(𝜌)𝜌(𝑡) respectively, and was extended to convolution invariant 
as 𝑓 ∗ 𝑔෣ (𝜌)  = 𝑓መ(𝜌)𝑔ො(𝜌). To generalise, a data represented as a group G acting transitively 
on a set 𝜒, we may find invariants of functions 𝑓: 𝜒 → ℂ with respect to the induced 
(translation or other) action 𝑓 → 𝑓௚ defined 𝑓௚(𝑥)  =  𝑓(𝑔ିଵ(𝑥)), 𝑔 ∈ 𝐺. The simplest 
example is 𝐺 =  𝜒 acting on itself by left-multiplication, in which case 𝑓௚ is the left-
translate of f.  
 
This leads to defining any matrix-valued functional 𝑠: 𝐿(𝐺) → ℂௗഐ×ௗഐ , which obeys ρ-
covariant,  𝑠(𝑓௧) = 𝜌(𝑡)𝑠(𝑓), while ρ-contravariant functionals are defined to transform 
according to 𝑠′(𝑓௧) = 𝑠′(𝑓)𝜌(𝑡)ற. For example, a ρ-contravariant function is 𝑠′: 𝑓 → 𝑓መ(𝜌)ற. 
 
The power spectrum of f is defined as a system of translation invariant matrices; Given 
unitary irreducible representations 𝜌 ∈  ℛ, the product of a ρ-contravariant and a ρ-
covariant function is invariant to translation: 𝑠′(𝑓௧)𝑠(𝑓௧) = 𝑠′(𝑓)𝜌(𝑡)ற𝜌(𝑡)𝑠(𝑓) =

𝑠′(𝑓) 𝑠(𝑓). This defines the power spectrum of f  as 𝑎ො𝑓(𝜌) =  𝑓መ(𝜌)ற𝑓መ(𝜌), 𝜌 ∈  𝑅. For more 
details on the invariance on groups in different settings, read (Risi Kondor, 2008) and 
(Stanković et al., 2005). 

5.5 Applications: 

The thesis in (Risi Kondor, 2008) presented two learning applications on groups. We will 
review one application that uses the invariant features required for representing images. 
Any image is better transformed from the spatial x-y grid pixel values to the spectral/Fourier 
terms/frequency domains. This achieves the desirable properties of this transformation such 
as scale, shift, translate, rotation invariance and compression for applications such as edge 
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or motion energy detection, filtering, directional derivative, textural signature, statistical 
structure identification such as objects and Optical character recognition. An image is 
represented by a linear combination of basis functions: 𝑓(𝑥, 𝑦) = ∑ 𝑎௞Ψ௞(𝑥, 𝑦)௞ , as a 2D 
Fourier analysis, Ψ௞(𝑥, 𝑦) = exp (𝑖(𝑢௞𝑥 + 𝑣௞𝑦)), where exp(𝑖𝜃) = cos (𝜃) + 𝑖 sin (𝜃).  

The transform finds a set of complex coefficients 𝑎௞ for every spatial frequency and 
orientation in the 2D Fourier domain spanned by the 2D frequency variables (𝑢௞ , 𝑣௞). 𝑎௞  are 
computed as the orthonormal projection of the function f(x) onto one complex exponential 
exp (−𝑖(𝑢௞𝑥 + 𝑣௞𝑦)). The Fourier Transform may compute these coefficients: 𝑎௞ =

∫ ∫ exp (−𝑖(𝑢௞𝑥 + 𝑣௞𝑦))
௒௑

 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, and  𝑓መ(𝑢, 𝑣) = ∫ ∫ exp (−𝑖(𝑢௞𝑥 +
௒௑

𝑣௞𝑦))  𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, such that each 𝑓መ(𝑢, 𝑣) is a complex coefficient which defines the 
magnitude and phase of a sinusoid basis function/coordinates called vector spatial 
frequencies. An array of them must span the (𝑢, 𝑣) Fourier plane in a uniform Cartesian 
lattice.  OpenCV Python package has a discrete FT function “dft” and its invserse “idft”, and 
“numpy.fft” module contains discrete FT functions for 1D, 2D, ND arrays and their inverses. 

These computed Fourier coefficients 𝑎௞  are complex-valued. If the function f(x) is real-
valued, then its frequency domain representation has two-fold redundancy. The real parts 
of the 𝑎௞ have even-symmetry: 𝑎௞ = 𝑎ି௞, and their imaginary parts have odd symmetry: 
𝑎௞ = −𝑎ି௞. Given this “Hermitian” symmetry, all coefficients are obtained by computing 
only half of them. 

Complex exponentials exp(𝑖𝜃), with real part as a cosine wave, and imaginary part as a sine 
wave, are the Eigenfunctions of linear systems exp (𝑖𝑢௞𝑡) → ℎ(𝑡) → 𝐴exp (𝑖𝑢௞𝑡). 
Therefore, Fourier transform becomes a linear operation: ℱ൫𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)൯ =

: 𝛼ℱ(𝑓(𝑥)) + 𝛽ℱ(𝑔(𝑥)). The Euler relation 𝑒௜గ + 1 = 0, connects the five most important 
mathematical constants and harmonic analysis of four branches of mathematics: 1) {0, 1} 
represents arithmetic, 2)  π≈ 3.14 represents geometry, 3) 𝑖 = √−1 represents algebra, and 
4) e≈2.718 represents the analysis. FT can then be computed by taking the limit of 

ቀ1 +
ଵ

௡
ቁ

௡
 as 𝑛 → ∞, that can be computed using the power-series definitions for the 

transcendental functions: 𝑒𝑥𝑝 (𝜃) = 1 +
ఏ

ଵ!
+

ఏమ

ଶ!
+

ఏయ

ଷ!
+ ⋯, 𝑐𝑜𝑠 (𝜃) = 1 −

ఏమ

ଶ!
+

ఏర

ସ!
−

ఏల

଺!
+ ⋯, 

𝑠𝑖𝑛 (𝜃) = 0 −
ఏయ

ଷ!
+

ఏఱ

ହ!
−

ఏళ

଻!
+ ⋯. 

The properties identified earlier for 1D FT are extended to 2D FT as follows: 

 A shift by 𝛼, 𝛽 in the spatial domain is multiplication by exp (−𝑖(𝛼𝑢 + 𝛽𝑣)) in the 
frequency domain 𝑓(𝑥 − 𝛼, 𝑦 − 𝛽) = 𝑓መ(𝑢, 𝑣)𝑒ି௜(ఈ௨ାఉ௩),  

 A scaling by 𝛼, 𝛽 in the spatial domain is scaling by the reciprocal of 𝛼, 𝛽 in the 

frequency domain 𝑓(𝛼𝑥, 𝛽𝑦) =
ଵ

|ఈఉ|
𝑓መ ቀ

௨

ఈ
,

௩

ఉ
ቁ.  

 A convolution of f(x,y) by g(x,y) in the spatial domain is just a multiplication of their 
frequency domain transforms: ℱ(𝑓 ∗ 𝑔)(𝑢, 𝑣) = 𝑓መ(𝑢, 𝑣) · 𝑔ො(𝑢, 𝑣).  
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 The derivative of a function in the spatial domain is equivalent to multiplying the 
frequency domain transform by the frequency value raised to the power of the 

order of the derivative: ቀ ௗ

ௗ௫
ቁ

௠
ቀ

ௗ

ௗ௬
ቁ

௡
𝑓(𝑥, 𝑦) ⟹ (𝑖𝑢)௠(𝑖𝑣)௡𝑓መ(𝑢, 𝑣). This enables 

the filtering of an image using different filter kernels g(x, y). This leads to isotropic 
differentiation, which treats all directions equally (for which the lowest possible 
order of differentiation is the 2nd-order, which is defined earlier as the Laplacian 
operator ∆ଶ) is equivalent simply to multiplying the 2DFT of the image by a 

paraboloid: ∆ଶ𝑓(𝑥, 𝑦) = ቀ
ௗమ

ௗమ௫
+

ௗమ

ௗమ௬
ቁ 𝑓(𝑥, 𝑦) = −(𝑢ଶ + 𝑣ଶ)𝑓መ(𝑢, 𝑣). 

 Also, in 2D, a rotation by angle 𝜃 in the spatial domain is a rotation by the same 
angle in the frequency domain: 𝑓(𝑥 cos(𝜃) + 𝑦 sin(𝜃), −𝑥 sin(𝜃) + 𝑦 cos(𝜃)) =

𝑓መ(𝑢 cos(𝜃) + 𝑣 sin(𝜃), −𝑢 sin(𝜃) + 𝑣 cos(𝜃)). 

 A change to the log-polar coordinates (r, 𝜃 ), where 𝑟 = log (ඥ(𝑢ଶ+𝑣ଶ), and 𝜃 =

tanିଵ(
௩

௨
), enables dilation/size change in the original pattern to become simply a 

translation along the r-coordinate, and any rotation of the original pattern becomes 
simply a translation along the orthogonal 𝜃-coordinate. This adds size and 
orientation invariance in the Fourier domain. 

 The power spectrum of an image is its 2DFT multiplied by its conjugate complex: 
𝑓መ(𝑢, 𝑣)𝑓መ∗(𝑢, 𝑣). The conjugate complex is computed by reversing the sign of i in the 

imaginary part of the 2DFT: 𝑓መ∗(𝑢, 𝑣) = ∫ ∫ exp (𝑖(𝑢௞𝑥 + 𝑣௞𝑦))
௒௑

 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦. 

The translation by 𝛼, 𝛽 is invariant in the power spectrum as: 𝑓መ(𝑢, 𝑣)𝑓መ∗(𝑢, 𝑣) =

 𝑒ି௜(ఈ௨ାఉ௩)𝑓መ(𝑢, 𝑣) 𝑒௜(ఈ௨ାఉ௩)𝑓መ∗(𝑢, 𝑣) 

An energy signal (almost all non-periodic signals) has finite energy and no power, such as 
the pulse signal has finite energy, though power is zero. A power signal (almost all periodic 
signals) has infinite and finite energy, such as the sinusoid signal. The power spectrum of a 
signal in the Fourier domain enables translation- size- and orientation-invariant pattern 
representations. In computer vision, this enables patterns’ representation in a manner that 
is independent of the patterns’ position in the image, their orientation, and their size (i.e. 
the Poincaré group of transformations). The power spectrum is the Fourier transform of the 
autocorrelation, which is the convolution of the signal with itself (not flipped), where 
delay/lag is the parameter that identifies how much a signal overlaps with itself over 
different lag values over time.  In the classical cases 𝑓መ(𝑢, 𝑣), we have the energy in each 
frequency mode and its phase information. The translation-invariant power spectrum loses 
the overall phase of the signal, while the relative phases of the different components 
contain important information. 

Bispectrum addresses the lost phase problem of the power spectrum while maintaining the 
translation-invariance property. It is defined over triple correlation by coupling different 
Fourier components. It has the form 𝑎ොଷ,௙(kଵ, kଶ) = 𝑓መ(kଵ) ∗ 𝑓መ(kଶ) ∗ 𝑓መ(kଵ + kଶ), taking two 
arguments and is a highly redundant representation of f. It is the Fourier Transform of the 
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triple correlation: 𝑎ଷ,௙(xଵ, xଶ) = ∑ 𝑓(𝑖 − xଵ) ∗ 𝑓(𝑖 − xଶ) ∗ 𝑓(𝑖)௡ିଵ
௜ୀ଴ ,  showing that it is shift-

invariant, and translation invariant by t is proven by 𝑎ොଷ,௙೟ =  (𝑒ି௜ଶగ୩భ௫𝑓መ(kଵ)) ∗

 (𝑒ି௜ଶగ୩మ௫𝑓መ(kଶ)) ∗  (𝑒ି௜ଶగ(୩భା୩మ)௫𝑓መ(kଵ + kଶ) = 𝑎ොଷ,௙. ห𝑓መ(𝑘)ห > 0 for all k, i,e, it is complete 
and uniquely determines f, up to translation. It is computed by recurrence from base cases: 
𝑓መ(0) = (𝑎ොଷ,௙(0, 0))ଵ/ଷ, 𝑓መ(1) = (𝑎ොଷ,௙(0, 1)/𝑓መ(0))ଵ/ଶ or  𝑓መ(1) = 𝑒௜ఝ(𝑎ොଷ,௙(0, 1)/𝑓መ(0))ଵ/ଶ for 

any phase factor 𝜑 ∈ [0, 2𝜋). Then the recurrence is 𝑓መ(𝑘) =
௔ොయ,೑(ଵ,୩ିଵ)

ቀ௙መ(௞ିଵ)ቁ
మ . Because of possible 

dividing by zero and hard to compute higher dimensional generalisations using tensors, 
other methods are proposed, such as the skew spectrum on compact groups reducing 
computation steps using the inherent symmetries. For complete formulation using group 
and tensor decomposition and applications to homogenous space, refer to (Risi Kondor, 
2008). 

The bispectrum serves as a complete source of invariants for homogeneous spaces of 
compact groups, including such important domains as the sphere S2, which is helpful for 
computer vision by providing a compact set of rotation invariants that improves 
discrimination and detects bilateral reflection symmetry. 

To apply the bispectrum on images to be translate- and rotation-invariant, ISO+(2) need to 
be compactified by exploiting a local isomorphism between the action of ISO+(2) of rigid 
body motions R2 and the action of SO(3) on the two-sphere S2. The author derived the 
bispectrum on the SO(3) and showed that representing the MNIST digits images dataset 
using bispectral representation outperforms the baseline representation of the images. This 
was confirmed by using linear and Gaussian RBF SVMs as 2-class SVMs for all ten class 
combinations.  The preprocessing included rotations by a random angle between 0 and 2π, 
clipping, and embedding at a random position in a 30 × 30 patch for each of the 1000 
original images of 28 × 28 pixels in size, but most of them only occupy a fraction of the 
image patch.  The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used as the 
iterative method for solving unconstrained nonlinear optimization problems to find the 
bispectrum images closest to a given bispectrum because the bispectrum consists of a 
collection of cubic polynomials, and inverting the mapping.  

Another application to representation learning is in the Transformer DNN model. The 
Transformer Deep Learning model was first proposed in NLP applications as an embedding 
learning approach that implements a unique encoding function that connects a word to its 
predecessor and successor words in the complete sentence. It was soon applied to various 
non-textual datasets, such as images. It was concisely introduced in chapter four and will be 
discussed in chapter six. Here, the context of this chapter requires a mention of data 
representation learning applications of the Transformer model as introduced in (Merrill and 
Althoff, 2021) and (Zhang et al., 2022). The Spatial Transformer Network (T-net) is a layer 
that can be added to CNN models (that has translation invariance by design) to learn a 
representation that is translation-, scale-, and rotation-invariant (Jaderberg et al., 2016). 
Their code is published at https://github.com/kevinzakka/spatial-transformer-network.  
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Furthermore, Point clouds are a set of points identified by their 3D coordinate based on the 
image acquisition method and might belong to multiple objects based on the view 
characteristics, such as the view angle, occlusion, light condition and source. Point Cloud 
analysis is the process of aligning the point and registering it, or in CAD models, use it in 
surface reconstruction. Four popular DNNs for point cloud analysis are PointNet, 
PointNet++, SpiderCNN, and DGCNN. Various tensor decomposition methods have been 
applied to this problem, such as Tucker (Li et al., 2019), Tensor block-wise singular value 
decomposition (Tamilmathi and Chithra, 2022), and Tensor regression (Yan et al., 2019). 

The 3D-Rotation-Equivariant Quaternion Neural Networks (REQNN) proposed in (Shen et al., 
2020) identified the conditions in which using quaternion learns a permutation-invariant 
and rotation-equivariant representations of 3D point cloud analysis. Their code is published 
in https://github.com/ada-shen/REQNN.  

The Rotation Transformation Network (RTN) proposed in (Deng et al., 2021) utilizes an 
Euler-angle-based rotation discretization manner to learn the pose of input 3D objects and 
then transforms them into a view-invariant pose by reducing their Rotation Degree of 
Freedom (RDF) to zero. The authors used the Princeton ModelNet dataset, which is a 
collection of 3D CAD models for objects used for object classification. Objects are also 
identified as belonging to SO(0) with zero RDF, i.e. their pose does not change in 3D space, 
SO(1) with one RDF, i.e. they are on a plane in the 3D space, or SO(3) with three RDF, i.e. 
they have an arbitrary pose in a centralized 3D space. The authors noticed that T-net 
performance degrades with the increasing RDF. They proposed the RTN layers added to the 
existing architectures and identified that RTN+DGCNN has the highest instance and average 
per-class accuracy. Their code is published in https://github.com/ds0529/RTN.  

(Mahadevan, 2008) representation discovery to a stochastic state-space planning problem, 
such as Markov Decision Processes (MDP), using Reinforcement Learning (RL) framework. 
Sequential decisions approximate a utility function that is often approximated using pre-
defined basis functions. Harmonic analysis was used to synthesise basis functions that were 
shown to outperform the best manually pre-defined basis. The unknown environment and 
utility functions were modelled by an agent using the random walk to build a graph with 
nodes identifying states, and the adjacency is built based on the succession of states 
temporally or based on achieved rewards in the exploratory phase. Then, the method 
applies the Laplacian operator on the graph, diagonalising it, and finding the smoothest 
eigenvectors corresponding to the smallest eigenvalues to approximate a policy 
representation capturing the underlying manifold of the samples collected. This means the 
manifold's topology representing a particular control task's state (action) space non-
parametrically constructs the new representation basis dynamically using the most concise 
(non-uniform local density regions). The identified smooth eigenvectors form the columns of 
the basis function |S| × k matrix 𝜑. These Laplacian basis functions can be used in 
conjunction with a standard “black box” parameter estimation method, such as Q-learning 
or least-squares policy iteration (LSPI), to learn the optimal policy that maximises the action-
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value function; the encoding 𝜑(𝑠): 𝑆 → ℝ௞ of a state s is computed as the value of the k 
proto-value functions on that state. Then this learned policy can be added to a list of 
policies, and the process can be repeated iteratively to learn more policies. More details on 
the algorithm, its application in various control tasks, and a comparison to pre-defined 
representation bases are presented (Mahadevan, 2008). 

Another application of representation learning presented in (Mahadevan, 2008) was in the 
3D object compression. The classic 2D image compression approach JPEG relies on the 
discrete cosine transform, a type of Fourier analysis on 2D arrays, and JPEG-2000 relies on 
the wavelet transform. Both approaches do not scale well to 3D object compression, which 
relies on identifying the 3D vertices in an object and defining their topology graph. Hundreds 
of megabytes of vertices can be defined in the input unit bases. A highly sparse 
representation basis can be identified in run-time using harmonic analysis methods 
presented in this chapter, whether by Fourier analysis or Wavelet analysis. More details 
about the performance of each approach as compared to the classic approaches are 
presented in the book. The third application in information extraction and retrieval (IR) from 
text datasets was presented in the book. The classical approach of latent semantic indexing 
(LSI) uses SVD, which is a form of Fourier analysis, to construct the term-document matrix. 
The author showed that employing diffusion wavelets instead reveals multiscale regularities 
across documents. 

The work of (Armenta and Jodoin, 2021) explains how the quiver representation as a 
directed graph that allows multiple arrows and loops is used in various concepts of neural 
networks such as fully-connected layers, convolution operations, residual connections, 
batch normalisation, pooling operations and even randomly wired neural networks. Data 
are also represented as quiver representation and mapped to a geometrical space called the 
moduli space. 

In previous chapters, various applications of tensor factorisation were discussed. The work 
of (Yang and Hospedales, 2017) presents a multi-task learning (MTL) representation learning 
using tensor factorisation (Tucker and TT) as a generalisation of the matrix factorisation 
(such as PCA) to share knowledge across tasks in fully connected and convolutional DNN 
layers. They compare their method to Single Task Learning (STL) vs MTL, using user-defined 
representation vs the learned representation on shallow and deep layer networks. The 
increased accuracy of learning the representation using tensor factorisation on deep layers 
is due to the end-to-end training of both the classifier and feature extractor. They published 
their code in https://github.com/wOOL/DMTRL/blob/master/demo.ipynb.  

There is a wealth of contributions in representation learning algorithms. For example, given 
a network, the representation can be learned using various methods as surveyed by (Zhang 
et al., 2018). OpenNE is a Python package that implements many network embedding (NE) 
and network representation learning (NRL), such as DeepWalk, LINE, node2vec, GraRep, 
TADW, and GCN. Their published code is in https://github.com/thunlp/OpenNE. Similarly, 
given a graph structure, various methods exist to learn their representation (Chen et al., 
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2020). The authors contributed GRLL (Graph Representation Learning Library) as a python 
package that implements many of these algorithms and evaluates their performance. Their 
code is published at https://github.com/yunchengwang/graph-representation-learning. 

For the latest papers and code on this topic, the Paper-with-code task 
https://paperswithcode.com/task/representation-learning keeps benchmarks, datasets, and 
papers contributing to the field.  
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