
 

Chapter 6: Tensor Computation  
Applications 

This chapter presents higher-level application domains for the various methods discussed in 
the previous chapters to identify trends and challenges. Tensor computing and analysis have 
been successful in various application domains, such as social network analysis, brain data 
analysis, web mining, information retrieval, healthcare analytics, signal processing, machine 
learning, and predominantly psychometrics and computational chemistry. In this chapter, 
we will select several applications to investigate how the various tensor analytics models 
have been applied, identifying some preprocessing steps, details of application methods and 
programming environment used, results’ analysis and performance evaluation compared 
with matrix methods.  

It is impossible to be comprehensive or select the best representative research outcome. An 
attempt to diversify the application domains and methods applied was made. Most models 
are 3-way models. We previously discussed a 3-way model in chapter three about 
MicroRNA-Disease Associations. The video application discussed in chapter four was a 4-way 
model. The BSS application in chapter four was a higher-order tensor. Chapter five discussed 
various applications of representation learning and feature extraction methods, followed by 
one application using tensorial methods in Multi-Task Learning. The applications in this 
chapter will span scientific computation applications, data science using various dataset 
types and requirements, and deep learning models. We will summarise in an attempt to 
create a general framework for tensorial methods in machine learning applications.  

6.1 Scientific Computing Applications 

Since Tensor computing was initially exploited in the psycho- and chemo-metrics 
communities and was founded by the quantum mechanics & physics community, we will 
start with one application from each of these three domains. We already covered a 
bioinformatics application in chapter three, covering the popular areas of scientific 
computing. We will then move on to data science and machine learning up to deep learning 
models. 
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Pieter Kroonenberg is one of the founders of multi-way analysis algorithms, from data 
preprocessing, model selection, and application problems in psychometrics, and social and 
behavioural sciences to agriculture, environmental sciences, and chemistry, to results 
interpretation and their validation and visualisation.   His book (Kroonenberg, 2008) offers a 
rich, easy-to-read explanation of the methods with reduced mathematical notation. The 
methods covered vary from Tucker and CP tensor decomposition, dataset preprocessing and 
handling of missing data to core factors interpretation to achieve multi-way PCA, multi-way 
correspondence analysis, multi-way factor analysis, multi-way clustering, and improve the 
model by scaling and rotation, and finally, results’ validation and analysis of residuals. His 
website at https://three-mode.leidenuniv.nl/, published the implemented algorithms, their 
applications, and the datasets. He has the software “3WayPack” that can be downloaded in 
Windows XP to execute the applications discussed in the book. The datasets are also 
available on the website to download and experiment with other recent development 
methods such as Matlab, R, Python, and others.  We will review the Happiness dataset and 
rebuild the model he explained in the book using Python. The survey dataset has a predictor 
in the first mode as the number of school years a subject finished (4 ordered categories), a 
second predictor in the second mode as the number of siblings (5 ordered categories), and 
their dependent variable is the happiness score in the third mode (3 ordered classes). The 
analysis is a correspondence analysis to identify the interactions between the variables. 
Data preprocessing included analysis of correlation and analysis of variance. The book 
evaluated five models, from 1x1x1 tensor to 2x2x2 tensor evaluating the Tucker3 to identify 
the Residual Sum of Squares  SS as SS(Total of Mode A) = SS(Fit of Mode A) + SS(Residual of 
Mode A), and similarly for the other two modes. Thus, SS(Residual)i / SS(Total)i is the 
proportional or relative lack of fit of the ith level of mode A. This showed that the 2x2x2 
model is the best model with a Proportional SS(Fit) of 86% as opposed to smaller models 
down to 0.69% for the 1x1x1 model. The results were validated using 𝒳ଶ (chi-square) 
statistic scores for expected different pair-wise interactions between each predictor and the 
dependent variable, then the combined interactions of both predictors on the target 
variable. The extended statistical investigation is interesting to follow to validate the end-to-
end results of some AI output.  This problem was reproduced in Python in the motivating 
problem of section 3.1 in chapter three accompanying source code “multi-
wayExamples.ipynb”. 

 
For the chemo-metric application, we will review a chromatography application using a 
tensor decomposition example that is recently published. In computational chemistry, 
chromatography separates a compound into its individual components for separation or 
identification objectives. Traditionally it can be solved by ICA methods such as in the BSS 
problem introduced in chapter two. The dataset used in the analysis is multi-way by 
nature—for example, different chemicals, solvents and stationary phases. A two-
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dimensional gas chromatography (GC×GC) is usually accompanied by a time-of-flight mass 
spectrometer (GC×GC-TOFMS) and has applications in food/drug/environmental 
contaminants/petrochemicals or other compounds safety and quality analysis. The lab 
process is to inject a solvent of a specific type into a tube containing a compound to 
separate its molecules. Then measure the Time Of Flight (TOF) of sample molecules on a 
detector such as an ion mirror/reflector on which ions with higher energy penetrate more 
deeply inside, extending the time when they are reflected. The detector performs regular 
measurements at regular intervals. Since the flight times of the separated ions are 
proportional to the square root of respective mass-to-charge ratio (m/z values), identifying 
the different molecules’ types. An excised region is a vector of length I, where I is the 
number of acquisitions in the region of interest of a single chromatogram. A multivariate 
detector spans the second mode of J variables or channels. This is usually performed over 
several runs. The challenge is that chemical components are free to shift independently 
along the first and second chromatographic modes between runs and employ different 
chromatographic modes.  (Armstrong et al., 2022) proposed using a fourth-order tensor 
𝒳ூ×௃×௄×௅ of I mass spectral acquisitions, J mass-to-charge ratios (mass channels), K 
modulations, and L samples as multiple samples from the same region of the chromatogram 
or entire chromatograms.  

The authors applied PARAFAC to decompose 𝒳 as 𝒳 = 𝐹ଶ(𝐷௟ ⊙ 𝐹ଵ ⊙ 𝐴)், such that 𝐹ଶ is 
as I × R matrix, A is a J × R matrix, 𝐹ଵ is a K × R matrix, and 𝐷௟ is an L × R matrix. They 
employed a tensor unfolding in the first two modes to produce the third order  𝒳௟

ூ∗௃×௄×௅ 
avoids the problem of drift in two modes by artificially reducing the problem to drift along 
one combined retention mode. Another approach is to form tensors of similar orders by 
stacking second-dimension retention profiles for an 𝒳௞௟

ூ×௃×௄∗௅, and first-dimension 
retention times’ 𝒳௜௟

௄×௃×ூ∗௅. Each model has useful properties, and using both models 
simultaneously to minimise (using ALS), the 4-way tensor reconstruction from the 3-way 
tensors arrives at optimal convergence at a retention mode at which the highest resolution 
between closely co-eluting (extraction) chemical factors. The approach is called the 
PARAFAC2×2 algorithm and is shown to achieve good results in synthetic and real data from 
a metabolomics study and is extensible to higher-order chromatographic separations. They 
published their Matlab code at https://github.com/mdarmstr/parafac2x2. Earlier simpler 
Parafac on three-way tensor decomposition method compared to PCA for chromatography 
are explained in chapter ten in (Smilde et al., 2004). A sample three-way chromatography 
dataset can be downloaded from https://three-
mode.leidenuniv.nl/data/chromatographyinfo.htm.  

The physics community and the mathematicians found everything about tensors, groups, 
representation and transformation. It is worth including some physical applications to 
tensor computing methods, besides the recurring example of Inertia matrix and SO(3) 
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matrices and their applications in computer graphics and robotic motion control. Later in 
the neural networks section of this chapter, an application of quantum mechanics will be 
reviewed. In chapter four, some applications of the TT decomposition method were 
discussed, including the density matrix renormalisation group (DMRG) algorithm optimising 
tensors with variable directions that has applications in solid-state physics for solving 
eigenvalue problems. Another TT application is the iterative alternating minimal energy 
(AME) algorithm that has applications in approximating solutions of higher dimension and 
multi-dimension systems of linear equations Ax=b, on which the Gaussian Elimination 
method would be intractable. Matrix factorisations have been used to speed up the 
computation when NxN matrix A is of a large N dimension, such as LU decomposition 
keeping the computation in O(N3). Also, Iterative methods such as the generalized minimal 
residual (GMRES) algorithm based on Krylov subspaces are in O(N2) complexity class but 
have problems of orthogonality for dense high dimensional matrices. The authors in 
(Lantsov, 2021) discuss converting the linear equations matrix to a tensor and applying 
tensor decomposition methods to reduce the memory requirements and speed up the 
calculations. Modern radio-frequency (RF) circuits and simulation of electronic circuits in 
CAD systems are high dimensional. For example, in CAD, electronic circuit design tools 
require analysis of different types such as static mode analysis (direct currents analysis, DC), 
small-signal analysis (linear analysis), transient analysis (time domain analysis), non-linear 
distortion analysis (based on Volterra series), harmonic balance analysis, and several others 
as identified by the authors.  The authors represented the equations high dimensional NxN 
matrix A with N2 elements as a low-rank tensor of N-order, using the TT decomposition as a 
tensor B with 22D elements, where D = log2 N. 

Similarly, matrix b was converted to the TT format. The conversion used a binary 
decomposition algorithm that they implemented in Matlab. Solving for x, the authors 
applied the DMRG algorithm, which was not as reliable as the AME algorithm, but both are 
computationally more efficient than the GMRES algorithm. DMRG and AME algorithms are 
implemented in TT Matlab Toolbox and other programming languages, including in Python 
in https://www.tensors.net/p-dmrg and explained in 
http://tensornetwork.org/mps/algorithms/dmrg/.  

6.2 Data Mining Applications 

We will consider any machine learning application, whether working on a text dataset, 
image or video dataset, semantic web or knowledge graphs, or any other format, as a data 
mining application. The first few applications are working on text datasets. However, no 
semantic encoding of the words is applied. Other NLP applications are reviewed while 
reviewing neural network applications. 
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The first application of tensors in data mining to review is contributed by Acar et al. (Acar et 
al. 2005), (Acar et al., 2006), who applied different tensor decompositions to the problem of 
discussion disentanglement in online public chatrooms on the Internet Relay Chat (IRC), and 
how social networks evolve. The authors implemented their own bot to collect their dataset 
and simulated some, containing the text messages with timestamps, nicknames of 
identities, and timestamps of nicknames quit/leave or kick. The nicknames could belong to 
the same person, pretending to be of any age and gender. The topics’ keywords were 
semantically analysed, and data distributions were estimated. A similar dataset without the 
nicknames is found at https://www.tensorflow.org/datasets/catalog/irc_disentanglement. 
The dataset is multidimensional and noisy.  

The authors constructed a tensor T of order three, capturing users, keywords, and time in 
each mode, respectively, such that where Tijk is user i, sent a number of keyword j, during 
time slot k. Then Tucker1 and Tucker3 were applied to identify user groups, which are set of 
users sharing a maximal keyword set in a given time period. This is achieved by an 
indeterministic c-means clustering algorithm running 100 times, which returns multiple 
memberships for each data point. The authors added different levels of Gaussian noise. 
Methods such as SVD as a 2-way dimensionality reduction method were applied in this 
paper on a matrix of users and keywords (UK) and another matrix of users and time stamps 
(UT). SVD clustered user groups with common keywords independently, and another cluster 
using the second matrix of users chatting at the same period. By tracing the resulting groups 
from all experiments at three different noise ratios, the multi-way structure connecting the 
three modes was more accurately captured by the multi-way tensor decomposition 
methods (Tucker1 and Tucker3) than by the SVD on UT method, while it failed by SVD on UK 
method. Then they defined a 4-way Tensor to add the IRC server as the fourth mode to 
identify the computational efficiencies of tensor higher-order representations and 
decomposition methods compared to the corresponding pair-wise approaches. 

The main lesson to learn from the previous paper is the data collection for tensor 
decomposition. Most datasets available in the public domain, such as Kaggle, Google 
Datasets, and UCI, are in matrix form. Data reformatting in matrix form as presented in the 
“tensorisation.ipynb” and “multi-wayExamples.ipynb” or other creative methods need to be 
planned for every experiment.  

In text analysis applications, (Bader et al., 2008) used CP for automatic conversation 
detection in the Enron Email dataset over time using an m term x n author x q month 3-way 
tensor 𝒳୫ ୶ ୬ ୶ ୯. This dataset is available at https://www.cs.cmu.edu/~enron/. Based on 
previous literature on the analysis of this dataset, the authors selected an interesting subset 
of this dataset that makes a tensor 𝒳଺ଽଵହ଻ × ଵଽ଻ × ଵଶ  with 1,042,202 non-zeros entries 
scaled to their weighted frequency. The authors used a non-negative tensor to avoid 



CHAPTER 6 

6 

subtractive basis vectors and encoding interactions that are found in PCA-like methods. 
They applied Parafac decomposition using ALS such that min

஺,஻,஼
 ‖𝒳 − ∑ 𝐴௟ ∘௥

௟ିଵ 𝐵௟ ∘ 𝐶௟‖ଶ. The 

decomposed tensor factors were Amxr containing highest scores for terms/topics,  Bnxr 
containing highest scores for authors, and Cqxr, containing the highest scores for these topics 
over time; they chose a 12-month duration. The rank r was chosen to retrieve a specific 
number of topics in the data, setting it to 25. Eight topics out of the 25 were interpretable in 
the context of other events happening in the same time duration, as compared to the two-
way (term-author) NMF method that could not extract these discussions. The 
decomposition predicted discussion threads and produced charts of previous focused 
discussions over time.     

6.2.1 Knowledge Graphs 

The probabilistic graphical models like Bayesian and Markov networks are classical 
approaches to learning from network and graph data. However, they require defining priors 
and data distributions and are compute-intensive for high-dimensional datasets (Schlüter, 
2014). Tensor decomposition approaches are more accurate in the collective learning of 
network data and the prediction of new relations in knowledge graphs, with a trade-off 
between expressivity and computational efficiency than non-tensorial methods. They were 
first used with probabilistic graphical models, such as the Bayesian Clustered Tensor 
Factorization (BCTF) as proposed by (Sutskever et al., n.d.), in which CP tensor 
decomposition was used to analyse network traffic and bibliographic data. The authors of 
(Nickel et al., 2011) proposed a relational learning approach RESCAL based on the DEDICOM 
tensor decomposition method with relaxed constraints. They exploited a three-way tensors 
𝒳୬ × ୬ × ୫ , n entities x n entities x m relationships such that when 𝒳௜௝௞ = 1, this means 
entity i has a relationship of type k with entity j. Entities. Domain data is given in form of 
RDF triplets. A tensor decomposition of the form 𝒳as 𝒳௞ = 𝐴𝑅௞𝐴், where A is a n×r matrix 
containing the latent-component representation of the repeated entities in two modes from 
the domain and Rk is an asymmetric r×r matrix that models the interactions of the entites in 
the k-th predicate. This is very close to a relaxed DEDICOM or equivalently, an asymmetric 
extension of IDIOSCAL tensor decomposition method. RESCAL is an efficient minimisation 
algorithm with regularsation term, based on the ASALSAN (Alternating Simultaneous 
Approximation, Least Squares, and Newton”) variant of the ALS approach. The computed 
low rank representation of the domain data, is used in preduction of a link as 𝒳෡௜௝௞ > 𝜃, for 
some threshold θ.  The collective classification can be performed by slicing the low rank 
reconstructed tensor for a given class relationship, or actually only reconstructing only the 
relevant slice. Also, Link-based clustering of entities can be performed using a similarity 
measure between entities based upon their similarity across multiple relations. The authors 
compared the performance of RESCAL compared to standard tensor factorizations such as s 
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CP and DEDICOM, and relational learning algorithms such as statistical unit node set (SUNS) 
and the aggregated SUNs+AG. The conducted various experiments on various datasets such 
as Cora dataset (https://relational.fit.cvut.cz/dataset/CORA), Kinships in Australian Tribes, 
Nations (clusters of countries, clusters of interactions between countries, and clusters of 
country features) and UMLS (Unified Medical Language System) that can be found at 
(https://github.com/ZhenfengLei/KGDatasets). They showed that the results of RESCAL and 
DEDICOM outperform both CP and SUNS on all datasets.  

The authors repeated the experiment (Nickel et al., 2012) using the noisy, large and high-
dimensional Semantic Web’s Linked Open Data (LOD) cloud that contains millions of 
entities, hundreds of relations and billions of known facts, found at https://lod-cloud.net/ 
and explained at https://www.ontotext.com/knowledgehub/fundamentals/linked-data-
linked-open-data/. When writing this paper, it connected 300 datasets; now, it connects 
1,255 datasets with 16,174 links. They employed the YAGO 2 ontology (that can be found at 
https://yago-knowledge.org/) that at the time contained 4.3x1014 possible triplets to 
improve the learning by factorising a large knowledge base using an extended RESCAL 
tensor factorisation method to include in the factorisation the attributes of the entities, i.e. 
the literal values in LOD. Due to the large dataset content, the authors used a map-reduce 
parallel programming paradigm to employ distributed computing nodes to speed up the 
processing. RDFs are based on ontologies that contain the T-Box ( terminological 
component), while the instance data are contained in A-Box (assertion component). The 
formed tensor 𝒳୬ × ୬ × ୫ represent both T-Box and A-Box simultaneously, making ontology 
a soft constraint, and the model is data-centric and ontology-driven. The model was tested 
for ranking and unknown triplets prediction and retrieval of similar entities using the latent 
factors in the decomposed core matrix A. Another application is the proposal of new 
ontologies’ terms from the data to knowledge database engineers as decision support 
systems to evolve an ontology by grouping/clustering instances. Out of 87 predicates 
relation in YAGO 2 at the time, 38 were used to form a sparse tensor 
𝒳ଷ଴଴଴ସଵ଻×ଷ଴଴଴ସଵ଻×ଷ଼ with  41 million entries and a sparse attribute matrix 
𝐷ଷ଴଴଴ସଵ଻ × ଵଵଷ଼ସ଴଻with 35.4 million entries. Of the  4.3x1014 possible triplets in YAGO 2, 
only 4x107 non-zero entries were available. The authors compared the RESCAL to other 
tensor factorisation and classical relational learning methods, showing that RESCAL is more 
efficient in predicting RDF triplets and other machine learning tasks. 

The authors of (Padia et al., 2016) further extended the RESCAL tensor decomposition 
method to RESCAL+ approach by adding a similarity matrix to the minimisation algorithm to 
force slices of the relational tensor to decrease their differences between one another to 
achieve unequal contribution of the slices. They tested using the DBpedia-Person dataset 
found at https://www.dbpedia.org/. They compared their link prediction performance 
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against the original RESCAL method and its non-negative variant NN-RES and showed that 
their method achieves higher AUC scores and diagonal confusion matrix scores. 

The RESCAL method is implemented in Python in https://github.com/mnick/rescal.py and in 
the scikit-tensor library along with CP, Tucker, DEDICOM, and INDSCAL found at scikit-
tensor library. 

The authors of (Lacroix et al., 2020) applied CP decomposition to predict dynamic 
knowledge graph links. They created a 4-mode tensor of subject, predicate, object, and 
time. They proposed a new dataset for temporal knowledge graphs parsing Wikipedia. They 
compared their model to other models on their proposed dataset and other datasets to 
show that their results are promising. They published their code at 
https://github.com/facebookresearch/tkbc.  

A generative model using Bayesian Tucker decomposition is proposed by (Castellana and 
Bacciu, 2019) that is suitable for tree-structured data. The Markov model is an expressive 
model that grows in size and becomes intractable for practical problems. Tensor 
factorisation enables the model to be a non-parametric Bayesian model as well. 

6.2.2 Computer Vision 

Eigenfaces is an algorithm for face recognition. It models several images for the same 
person as an unfolded vector of each image that is stacked in a matrix. Then, Eigen 
decomposition using principal component analysis (PCA) is applied to reduce the 
dimensionality of the images to use only the uncorrelated variables. The result is the 
eigenface with the smallest Euclidian distance to which the person resembles the most (Turk 
and Pentland, 1991). Their code is implemented at https://github.com/svetlana-
topalova/eigenfaces. The spatial image content is represented in XY matrices for P people, 
so each matrix represents only one person. Capturing pair-wise variance build models that 
work best when only a single factor varies; in eigenfaces, it is the person's identity but loses 
efficiency when compound factors vary, such as poses, viewpoint, and others. The authors 
of (M. Alex O. Vasilescu and Terzopoulos, 2002) pioneered the use of Tucker decompositions 
in computer vision to disentangle the multiple factors an image is composed of, such as 
scene structure, different facial geometries (people), expressions, head poses, lighting 
conditions, and imaging. They contributed TensorFaces, representing the tensor 
decompositions' cores as a set of facial components. They applied a HOSVD on a facial 
images (512 × 352 decimated by a factor of 3 and cropped yielding 7943 pixels) dataset of 
28 people x 5 poses x 3 illumination condition x 3 facial expressions x 7943 pixels. This 
created a 5-mode tensor 𝒟ଶ଼×ହ×ଷ×ଷ×଻ଽସଷ, that is decomposed by HOSVD to: 𝒟 =
𝒵 ×ଵ 𝑈௣௘௢௣௟௘ ×ଶ 𝑈௩௜௘௪௦ ×ଷ 𝑈௜௟௟௨௠௡௔௧௜௢௡ ×ସ 𝑈௘௫௣௥௘௦௦௜௢௡ ×ହ 𝑈௣௜௫௘௟௦, such that 𝑈௣௘௢௣௟௘ ∈

ℝଶ଼×ଶ଼spans the space of people parameters, 𝑈௩௜௘௪௦ ∈ ℝହ×ହspans the space of viewpoint 
parameters and so forth for the remaining factor matrices. Each Factor matrix is computed 
as 𝑈௡  =  𝒟(௡)𝑉௡𝛴ା, where 𝒟(௡)is mode n flattening of 𝒟, and computing SVD on 𝒟(௡) to 
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have the right matrix 𝑉 and the singular values in the diagonal matrix 𝛴, considering 𝑈௡ to 
be the left matrix of the SVD. This method generalises the eigenfaces method as factor 
matrix 𝑈௣௜௫௘௟௦ is the eigenimage. Solving for the core matrix 𝒵 calculates the interactions of 
all modes considered in this experiment, as explained in the Tucker Decomposition in 
chapter three. PCA is a change of basis mapping, such as in eigenfaces. Each person will be 
represented parsimoniously using the different PCA coordinates. Similarly, 𝒵 and all 𝑈௡ for 
all the modes considered, can be thought of as a change of basis/coordinates mapping 
functions to retrieve slices of the Tensor 𝒟 that abstract a person as poses change, or as 
illumination changes, or as expression changes. This is achieved by reducing the intra-class 
or intra-person interactions so as not to confuse people together by maximising the inter-
class or inter-person interactions of the changing conditions considered. You can refer to 
the original paper for images abstracting the variation of illumination, poses and expressions 
independently. 

A sample Tensorfaces implementation using only 3-mode tensors using the Tensorly Python 
package can be found at 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tensorf
aces.ipynb. They formed a 3-way tensor 𝒳ଷ଼×ହ଴×ଶଽ଴଴ of 38 people x 50 illuminations 
condition x and  2900 pixels from the Yale Face Database found at 
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.  

Additional modes such as camera angle and more can also be incorporated using the 
tensors machinery. The authors compared TensorFaces to eigenFaces and PCA approaches 
to facial recognition and found the accuracy of TensorFaces is significantly more accurate 
than standard PCA techniques and can separate each factor's interactions while considering 
compound interactions as well (M.A.O. Vasilescu and Terzopoulos, 2002). They also worked 
on reducing the dimensionality (working on subspaces) of every core matrix to achieve 
compression and remove irrelevant effects, such as illumination, shadows and highlights 
were removed, while retaining key facial features (Vasilescu and Terzopoulos, 2003).  

The authors of (Lehky et al., 2020) expanded the analysis of the TensorFaces 
representations to measure the reconstruction errors at different complexities levels 
(ranks). They used synthesized faces generated by FaceGen software 
(https://facegen.com/), which they modelled in a 4-mode tensor, keeping the spatial image 
width and height as the first two modes (Tensorfaces was vectorising the image as 1D in one 
mode), a colour dimension, and the different individuals' dimension. The training dataset 
contained 128 faces, and the test set contained 40 faces, all equally from males/females and 
from four different races at the same rotation, pose and camera angle. Their aim was to 
attempt a reconstruction of these faces at different levels of complexity and measure the 
reconstruction error to decide the best level of complexity. They experimented with various 
measures of complexity and errors using TensorFaces, and other pair-wise methods such as 
PCA and ICA. They showed that low-complexity representations are better for novel faces 
(not seen in the training dataset) than high complexity representations. This means that 
tensorial methods achieve regularization as well as multi-way interactions. 
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Vasilescu in (Vasilescu, 2002) has also applied the Tucker decomposition to human motion 
as a composite of multiple actions. The author had multiple aims,  to extract a human 
movement signature as a subset of actions (analysis), to resynthesize new motions from the 
learned ones (synthesis), and recognise a specific person or action (recognition). The author 
defined a tensor 𝒟 ∈ ℝ୒×୑×୘, where N is the number of people, M is the number of action 
classes, and T is the number of joint angle time samples.  The author applied the same N-
mode SVD applied in TensorFaces, 𝒟 = 𝒵 ×ଵ 𝑃 ×ଶ 𝐴 ×ଷ 𝐽. The people core matrix P has N 
person-specific rows containing the human motion signatures. The action core matrix A has 
M action-specific rows encoding action invariances across people. The last joint angle matrix 
J has T joint angles rows, the eigenmotions typically computed by PCA. The analysis is 
achieved by a change of basis to capture a person-associated motion by  𝒞 = 𝒵 ×ଵ 𝑃 ×ଷ 𝐽, 
and the change of basis to capture an action-associated motion is achieved by ℬ =
𝒵 ×ଶ 𝐴 ×ଷ 𝐽. The synthesis is achieved by the knowledge of the core tensor 𝒵 capturing all 
multi-way interactions, core matrix A generalising the actions, and core matrix J generalising 
the joint angles. To synthesize an action of a new person not seen before is a Tensor 
completion or a regression problem to predict 𝒟௣,௔ of a new person p doing action a, as 
𝒟௣,௔ = ℬ௔ ×ଵ 𝑝் , where ℬ௔ = 𝒵 ×ଶ 𝑎௔

் ×ଷ 𝐽 for the specific action a. If the aim is to 
synthesie a motion for a new individual, then 𝑝் = 𝑑௔

்ℬ௔
ିଵ, where 𝑑௔

் is the flattened tensor 
in the people mode, and choosing the specific action Transpose, and the complete set of 
motions for the new individual is 𝒟௣ = ℬ ×ଵ 𝑝். If the aim is to synthesize a new action for 
a known person that we have other actions recorded for, the new action 𝑎் = 𝑑௣

்𝒞௣
ିଵ, then 

synthesizing this action for all people in the database is 𝒟௔ = 𝒞 ×ଶ 𝑎். This makes this 
tensor decomposition a generative model. In machine learning, discriminative models, like 
most classification models, learn from a prelabelled dataset how to discriminate the 
different classes. While a generative model, specifically the Bayesian probabilistic model, 
understands how samples are generated and can create new data instances from the known 
ones. Also, the recognition task is achieved in this tensor decomposition by identifying a 
person from action parameters as the projection 𝑝 = ℬ௔

ି்𝑑 . Similarly identifying a person’s 
specific action is the projection 𝑎 = 𝒞௣

ି்𝑑. In both cases, the neareset neighbour algorithm 
returns the nearest person or action in the learned motion data d.  

The author experimented using a Human limb motion dataset collected using a VICON 
system that employs four video cameras detecting the 3D position of 18 infrared markers 
placed on each person's legs. Six persons moved in different actions across a 12-meter 
walkway, such that two cameras could observe each marker during the three different 
motions (walking, ascending/descending stairs). A similar dataset is collected by (Wang et 
al., 2021), and others are found at https://www.handcorpus.org/?tag=humanmotiondata. 
Vasilescu validated the ability of the tensor decomposition model to synthesize new 
motions for people and identify people from motion or actions from recorded motions. 
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6.3 Deep Neural Networks Compression 

Chapter five, all previous applications in this chapter and other chapters, required hand-
tailored feature engineering to define a suitable feature extraction of best representation 
based on some criteria. The criteria can be to achieve dimensionality reduction, model 
compression, model regularisation, or data representation invariance to some 
transformations such as translation, rotation, scale and others. DNN, since 2006 have been 
evolving to solve many problems using linear algebra concepts hierarchically to model non-
linear relationships without hand-crafting the representation of the features or the model 
parameters. Neural Networks are considered function approximators, starting from the 
simplest regression model using one input layer and one output layer. Adding more layers 
learns more complex data representation and functions. These approaches are labelled 
feature engineering and are known to enhance the performance of any machine learning 
algorithm. Features transformations include Fourier Transforms and their variants, such as 
STFT, MFCC, or wavelets transform and their variants, and others such as SOFT, HOD for 
image, audio and video datasets, BoW and TF-IDF for text datasets.  

While neural networks implicitly learn the representation, they achieve compression and 
regularisation by approximations that are achieved through the layers by neglecting 
irrelevant contents, such as the pooling layers in CNNs applying different pooling functions. 
This process studies the structural data interactions, forming an embedding representing 
the data that can be used for the given machine learning task at the output layer. The depth 
of the neural networks adds more parameters to estimate, causing the curse of 
dimensionality in big data analytics. It was observed that the weights within a layer in CNN 
can be estimated by a 5% subset of its parameters, indicating the DL models are over-
parameterised (Denil et al., 2014).  

The increase in parameters from the increased number of layers created the need for tensor 
structures and algorithms to reduce the computational complexity without losing multiple 
interactions by the overly-simplistic pair-wise interactions. A direction of improvements for 
DNN performance was labelled compressive DNN, which aims to reduce hardware 
requirements and enable running in embedded devices such as phones and IoT (Wu et al., 
2020).  

The simplest method to compress a NN is to add the famous pooling layer that primarily 
applies the max (to keep only the highest values as the bright colours of an image only) or 
average or other functions based on the application requirements, on the weights specifying 
how much spatial reduction in size is required. This is a blind compression method. Another 
blind compression is the famous dropout layer that randomly sets some neurons to zero; 
this approach is called pruning. This is useful for regularisation to prevent the network from 
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overfitting. Other methods work to learn which neurons to drop out in a structured 
approach, such as (Fan et al., 2019) and (Knodt, 2022).  

Other compression approaches, such as Vector quantisation methods, were applied to the 
CNN parameters and storage requirements. These methods include binarization (1-bit 
quantization) by turning off neurons with negative values. Another Quantisation method 
uses lower precision, such as converting floating point types to integer types compressing 
the network four times and speeding it up 2:4 times. Moreover, scalar quantisation uses k-
means to cluster the weights and use representative neurons of each cluster. Also, Product 
quantisation divides the weights vector space into many disjoint subspaces and quantises 
them by raising them to different powers and applying k-means on all and storing their 
cluster indices only. Finally, the residual quantisation performs clustering by k-means and 
then identifies the residuals to reapply the clustering on them (Gong et al., 2014).  

Another NN compression approach is HashedNets (Chen et al., 2015), which uses a hash 
function to group connection weights in hash buckets. A single parameter for each hash 
bucket is stored for the connections sharing the bucket. The traditional matrix factorisation 
methods (low-rank matrices) such as SVD on the weights matrix and only storing the highest 
singular values corresponding weights. Layer Fusion (Graph Optimization) is another 
compression approach that minimises computation, memory storage, and bandwidth by 
combining successive computational graph nodes into a single node for kernel execution. 

Also, various tensor factorisation algorithms have been applied to achieve NN compression. 
This approach requires tensorizing and decomposing the weight matrices into a series of 
low-rank tensors to reduce redundant weights by using sparse representations. Due to the 
DL enhancements, both applications of computer vision and NLP applications research 
advanced through the years. We will start with these two application domains. Then, deep 
generative models, multi-modal applications and graph neural network (GNN) models will 
be discussed. 

6.3.1 Computer Vision 

The first application advances were facilitated by using CNN with deeper layers than ever 
before. Although the transform to the Fourier Domain was observed to speed up the 
convolution performance by 200% to achieve higher accuracies in capturing more complex 
interactions in a dataset, deeper layers have always been the solution, increasing the 
number of parameters and leading to the need for NN compression. Although, research 
trends are still mixing up explicit representation encoding by adding more layers, such as 
(Nair et al., 2020) propose using Fourier Transform Layer in CNN to optimise object 
detection. The need for model compression is needed in all network models. 
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The authors of (Novikov et al., 2015) replaced fully connected layers in CNN with a Tensor 
Train (TT-Layer) that they called TensorNet, which is compatible with the same training 
algorithm. As explained in the previous chapters, all tensor decomposition approaches 
capture more multi-way structural interactions in the dataset, making them more expressive 
than pair-wise matrix factorisation or compression approaches. TT Format is more immune 
to dimensionality curse and simpler for basic operations (addition and multiplication by a 
constant, summation and entry-wise tensor products, the sum of all elements and Frobenius 
norm) than Tucker and Hierarchical Tucker tensor decompositions. They proposed a 
mapping function between the weights matric and the TT-format and introduced the NN 
layer with weights stored in TT-format to be a TT-layer, which, when used in any NN, makes 
it TensorNet. A fully connected layer computes 𝑦 = 𝑊𝑥 + 𝑏, while a TT-layer converts all to 
tensors in TT-format 𝒴(𝑖ଵ, … , 𝑖ௗ) = 𝒢ଵ(𝑖ଵ, 𝑗ଵ) … 𝒢ௗ(𝑖ௗ , 𝑗ௗ)𝒳(𝑗ଵ, … , 𝑗ௗ) + ℬ(𝑖ଵ, … , 𝑖ௗ), where 
𝒢௜are the d core tensors of the TT-format of the original weights matrix, and 𝒴, 𝒳 and ℬ are 
the d-dimensional tensors formed from the corresponding vectors y, x, and b, respectively. 
The paper details how the loss function can be performed in the TT-Format. They 
experimented with MNIST,  and CIFAR-10 datasets, comparing a baseline two-layer fully 
connected network with the two-TT-Layer TensorNet using different ranks (compression 
factors) to show that they achieved 200,000 times fewer parameters and compressing the 
size of the whole network by a factor of 7, without compromising the accuracy on TT-ranks 
all equal to 8. They tested the ImageNet dataset using a different arrangement of layers of 
TT with various ranks, FC, and MR (matrix rank restricted) on the VGG-16 and VGG-19 
networks. All experiments show TensorNet to be the most compressed, most accurate and 
faster both on CPU and GPU and has the potential to improve the performance of wide 
(more neurons) and shallow (fewer layers) networks that were known for overfitting. More 
details about their experimental setup details can be found in their paper, and their Matlab 
code is published at https://github.com/Bihaqo/TensorNet. TT-layer was implemented by 
the Tensorly package at 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tt-
compression.ipynb/.  

The previous application employed TT tensor decomposition on the single layers of the 
network to efficiently store the dense weight matrices of the fully-connected layers of a 
VGG network. Conversely, (Calvi et al., 2020) introduce the Tucker Tensor Layer (TTL) as an 
alternative to the dense weight matrices of neural networks. They also showed how the 
number of parameters in the neural layer is reduced while deriving a Forward and back-
propagation on tensors algorithm that preserves the physical interpretability of Tucker 
decomposition and provides an insight into the learning process of the layer. Using various 
compression factors, they also tested on the MNIST, Fashion-MNIST, and CIFAR-10 datasets 
using the VGG-16 network. For example, they achieved a 66.63% compression with 82.3% 
accuracy compared to 86.3% accuracy of the uncompressed model.  
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The Hierarchical Tucker (HT) tensor decomposition method performs better in compressing 
the weight matrices in Fully Convolutional layers because HT prefers the tensor with 
balanced dimensions lengths, as shown in (Gabor and Zdunek, 2022). The authors 
experimented with medium-scale CNNs on the CIFAR-10 dataset and large-scale CNNs, such 
as VGG-16 and ResNet-50, on the ImageNet dataset. They compared HT-2 to other tensor 
factorisation and other NN compression approaches to show its competitiveness in the 
achieved compression without much drop in accuracy. Their code is published at 
https://github.com/mateuszgabor/ht2.  

A hybrid tensor decomposition combining TT and HT is proposed in (Wu et al., 2020). The 
authors tensorized the input X and the weight matrices W, applied the tensor 
decomposition on the weights tensor and updated the forward pass WX multiplications for 
fully connected layers, RNNs and LSTMs. They also tensorized the kernels in CNNs and then 
explained the tensorized the gradient calculations in the back-propagation step. They 
compared HT formats to TT-LSTM (Yang et al., 2017) and TR-LSTM (Pan et al., 2018) models 
on the UCF11 and UCF50 video classification datasets. Then they compared kernel 
compression in CNNs on the CIFAR-10 dataset and adopted 3D-CNNs to recognize videos on 
UCF11 and CVRR-HANDS 3D datasets. They show that RNNs/LSTMs in the HT format have 
higher compression than those in the TT format when compressing weight matrices but with 
worse accuracy than regular uncompressed RNNs. They also showed that the TT format is 
more suitable for CNNs, achieving higher accuracy but similar compression to the HT format. 
Comparing the proposed hybrid tensor decomposition method on CNN models, it has both 
higher accuracy and higher compression than the TT format and outperforms the 
uncompressed models in the CVRR dataset.  

6.3.2 NLP Application 

Bag of words (BoW) and other frequency-based methods such as Term Frequency – Inverse 
Document Frequency (TF-IDF) of encoding text data were used to capture some semantic 
context for the data. These failed to capture the different meanings one word could have 
when placed in different sentences with other words or even in a different order in a 
sentence with the same words. Initially, semantic understanding of text depended on rule-
based creation such as building ontologies and semantic web tools such as Resource 
Description Framework (RDF). This provided trinary relationships in which many words’ 
meanings and contexts can be captured. These methods can be easily built using a graph 
database.  

(Socher et al., 2013) proposed Recursive Neural Tensor Network (RNTN) that uses a high-
order neural network for structured data that leverages a full 3-way tensor for aggregating 
children's information in binary parse trees within a natural language processing application. 
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Their method built the Stanford Sentiment Treebank dataset that is available at 
http://nlp.stanford.edu/sentiment. They build a tree for the word vectors in the embedding 
matrix ℒ ∈ ℝௗ×|௏|, where d is d-dimentional word vector, and |V| is the number of words. 
This binary tree has leaves of the ordered words in the corpus, and learn the parent pi as 
hidden vectors that are functions (such as tanh) of the two children that, at the first level, 
are two given words. The recursive neural networks (RNN) models generally learn these 
hidden vectors in a bottom-up fashion to learn a classification 𝒲,  matrix, such that the 
classification into C sentiment classes becomes the posterior probability of the classes 
computed as 𝑦௔ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௦𝑎), where 𝑊௦ ∈ ℝ஼×ௗ is the sentiment matrix, multiplied 
by a word vector a. The word vector a is compused in tri-gram as a parent with two children 
in a binary tree, and a can be at any level in the tree, the leaves of the hidden computed 
parents. This allows the word vectors to interact through the non-linearity function. Another 
model is Matrix-Vector RNN (MV-RNN) which represents words as vectors, and longer 
phrases as trees, such as each n-gram are represented as a list of (vector, matrix) pairs and a 
parse tree. This enables the interaction between words in phrases but increases the number 
of parameters to estimate. RNTN uses a tensor composition function for all nodes such that 
each slice of the tensor captures a specific type of composition on words’ multiplicative 
interactions. The authors explained the back-propagation algorithm for tensors and used 
AdaGrad for this non-convex optimisation.  

RNTN achieved the highest performance for shorter sentences compared with standard 
RNN, MV-RNNs, and baselines such as neural networks that use a bag of words ignoring 
word order and a bag of words features with Naive Bayes and SVMs, as well as Naive Bayes 
with bag of bigram features. The bag of words method works well with longer sentences. 
The authors experimented with the different n-grams lengths to show all models' 
performance. They also experimented with the complexity of sentences such as negation, 
using “but” to identify the most positive and the most negative sentences. This application 
uses a neural network model that could have benefitted from more deep layers to capture 
more complex interactions, reducing hand-crafting of the semantic representation. 

As obvious from the previous application, semantic tree approaches are domain-specific and 
sometimes require huge human experts to define the required relationships manually. The 
following application falls in between this category (building ternary relationships) and 
learning an embedding. After reviewing this, we will resume other methods based on 
learning an embedding from a given text corpus.  

The authors in (Weber et al., 2017) presented a natural language understanding application, 
where tensors are used to capture multiplicative interactions combining predicate, object 
and subject, generating aggregated representations for event prediction tasks. The RNN 
models are sequential in events, while additive models create a compound effect of the 



CHAPTER 6 

16 

variables using additive functions. A generalised additive model can be defined as 𝑦 = 𝛽 +

𝑓ଵ(𝑥ଵ) +  𝑓ଶ(𝑥ଶ) + ⋯ + 𝑓௡(𝑥௡) = ∑ 𝑓௜(𝑥௜)௡
௜ୀଵ , or even 𝑦 = 𝛽 + ∑ 𝑓௜(𝑥௜)௡

௜ୀଵ +

∑ 𝑓௜,௝(𝑥௜, 𝑥௝)௜ஷ௝   as defined in (Hastie and Tibshirani, 1999). Multiplicative models are more 
sensitive to small changes in the arguments interactions. Tensor-based provide 
multiplicative models that were utilised in the Weber et al. paper to learn tensors P of the 
predicate, subject, and object,  to predict an event e computed as tensor contraction P(s, o), 
such that the event vector ei, is learned as  𝑒௜ = ∑ 𝑃௜,௝,௞𝑠௝𝑜௞௜௝௞ , from the s and o as subject 
and object vectors, respectively. The authors used a predefined word embedding to create 
the tensor 𝑊ௗ×ௗ×ௗ, where d is the dimension of the input embedding, and each row is a 
word. The predicate tensor P is learned as 𝑃௜௝௞ = 𝑊௜௝௞ ∑ 𝑝௔𝑈௔௝௞௔ , where 𝑈ௗ×ௗ×ௗ is a tensor 
capturing the linear functions for each one-dimensional row of W, determining how the 
predicate embedding p should scale that dimension. This makes Tensor-based Event 
Composition (as the first model) predict an event 𝑒௜ = ∑ 𝑝௔𝑠௝𝑜௞𝑊௜௝௞𝑈௔௝௞௔,௜௝௞ . The authors 
used a training data from the New York Times Gigaword Corpus, extracting the event triplets 
using the Open Information Extraction system Ollie. They initialized the word embedding 
layer with 100-dimensional pre-trained GloVe vectors. A second model is proposed as the 
Role Factored Tensor model, such that 𝑒 = 𝑊௦𝑣௦  + 𝑊଴𝑣௦, such that 𝑣௦ = 𝑇(𝑠, 𝑝), and 𝑣௢ =

𝑇(𝑜, 𝑝), where 𝑇௛×ௗ×ௗ with h as the size of the output and d as the dimensionality of the 
embdding, is a tensor composed of factored composition strategy that captures interactions 
between the predicate and its arguments separately to then combine these interactions into 
the final embedding. They trained a baseline as a two-layer compositional neural network 
model 𝑒 = 𝑊 × tanh(𝐻[𝑠; 𝑝; 𝑜]), where W and H are the model parameters to estimate 
using Adagrad learning algorithm with a 0.01 learning rate and minibatch size of 128. The 
second baseline is a multiplicative two-layer NN concatenating the elementwise 
multiplications between the verb and its subject/object such that 𝑒 = 𝑊 ×

tanh(𝐻[𝑠; 𝑝; 𝑜; 𝑝⨀𝑠; 𝑝⨀𝑜]), where ⨀ is the ekement-wise multiplication. They created 
another variant to predict the next word, not just the next event. They evaluated the model 
using Coherent Multiple Choice Narrative Cloze dataset (CMCNC) which is used to estimate 
which event has been held out from a document from a small set of randomly drawn 
events, found at https://paperswithcode.com/dataset/cmcnc. They used another automatic 
variant to this benchmark (MCNC) and showed that the accuracy of the Role Factor Tensor 
approach is higher in predicting events and words than the Predicate Tensor and the other 
two NN baselines using Spearman’s correlation. The Predicate Tensor approach was better 
in one case predicting words (which was always more accurate than predicting events), 
using Hard similarity scores as a percentage of cases where the similar pair had higher 
cosine similarity than the dissimilar pair. The authors also used their learned tensor to draw 
an event schema starting from a seed event and connect all possible events that could occur 
next using the nearest neighbour algorithm. Their code is published at 
https://github.com/stonybrooknlp/event-tensors.  
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The NLP application advances were achieved by using word encoding that captures the 
multiplicative interactions and considers word order efficiently, and also by using deeper NN 
layers. NLP advancements grew throughout stages from manually crafting the words’ 
embeddings capturing word semantics relations like GloVe to adding a layer that learns this 
embedding from a given dataset in RNN or LSTM models, to transfer learning to use pre-
trained models and fine-tune to specific applications. The RNN model learns sequential 
dependence of the input over temporal or spatial dependence, making it useful in word 
order semantics required in NLP applications. RNNs were used in sequence-to-sequence 
models such as encoder-decoder NN and for applications such as language translation (input 
as a sequence of words from the source language and output as a sequence of words at the 
destination language of variable lengths). The last hidden state of the encoder is the source 
language embedding, which is based on the decoder to generate the equivalent sentence in 
the destination language. LSTM uses more complex gates, in which some states are 
remembered for longer than others, adding another level of sophistication in learning the 
word order complexities and solving the vanishing gradient problem of RNNs. Then, the 
attention mechanism evolved so that all encoder layers were exposed to the decoder to 
prevent the final hidden layer production bottleneck. This requires exposing all states by 
assigning weights to decide which state to use. These weights are learned from the training 
dataset. Then comes the Transformer encoder/decoder model. The Transformer encoder 
has two sublayers, a self-attention layer and a Feed Forward NN layer instead of the RNN 
(sequential naturally) or LSTM cells (at least four times the computational cost of RNN cells). 
Transformers use positional encoding to compensate for the missing sequencing due to the 
elimination of RNNs and LSTMs. Then the decoder component uses the abstract vector 
representation of the input sequences to generate one word at a time, attending to 
previously generated words using a similar mechanism to the encoder but adding a third 
sub-layer to perform multi-head attention over the output of the encoder stack, allowing 
the model to focus on different positions or sub-spaces. 

The self-attention is implemented in many ways to capture interactions between all words 
in a sentence. The original Google proposal was called the scaled dot-product attention that 
used three matrices, query Q (representing the current word), key K (representing labels for 
all the words in the segment to score against to identify relevance to the query) and value V 
(actual word representations), such that the n token embedding is multiplied by them. 
Similarity scores S nxn matrix is calculated from the scaled dot-product of Q and K vectors, 
identifying similar ones with large values. The attention weight W nxn matrix is calculated by 
normalising the similarity scores S using the softmax function. Then the self-attention layer 
output is produced by multiplying the weights with the value V vector. Instead of one 
embedding, three embeddings are created for Q, K, and V independently, and then each one 
of them is projected through multiple linear projections creating multiple heads for the 
attention layer. These scores identify the relevance of focusing the attention on what to 
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remember rather than what to forget in LSTM models. The positional encoding of words in 
sentences is one of the characteristics of the Transformer model, and it can be absolute 
positional, relative positional, or rotary positional (Vaswani et al., 2017). 

Transformers are considered the most advanced NLP approach with applications in 
computer vision (Dosovitskiy et al., 2021), automatic speech recognition, time series 
modelling and other machine learning applications, not NLP applications only. While 
capturing the input interactions in forward and backward dependence, the Transformer 
design is also parallelised because of recurrence sequential processing elimination and the 
use of multi-heads and multilinear mappings. Many Transformer based models have been 
proposed in the literature; some build on the encoder only, the decoder only, or the 
encoder/decoder model—some examples include BERT, RoBERTa, GPT-2, and DistilBERT, 
which combine self-attention and transfer learning. The HuggingFace platform 
(https://huggingface.co/) provides various architectures using a unified codebase for various 
ML tasks and datasets. For a tutorial style on the Transformer using Python, read the book 
(Tunstall et al., 2022). 

The Transformers estimate a large number of parameters and can benefit from compression 
techniques such as parameter sharing across layers and low-rank approximations. These can 
be achieved by tensor decompositions methods such as Block-Term Tensor Decomposition 
(BTD), which is proposed by the authors of (Ma et al., 2019). BTD combines both CP 
decomposition and Tucker decomposition, such that a tensor is decomposed into P Tucker 
decomposition, each with its core tensor and d factor matrices, such that P is the CP rank. 
The authors first used Single-block attention based on the Tucker decomposition to use a 
linear function of a set of vectors. Then they built the multi-head attention using the BTD, 
enabling parameter sharing across multiple blocks, higher compression (8-times fewer 
parameters), and lower complexity. They tested using PTB, WikiText-103 and One-billion 
language modelling tasks, and English-German neural machine translation WMT-2016 to 
show that their method is more compressed and more accurate than Transformer, 
Transformer XL, TT-format tensor factorised Transformer model, and other models using 
RNN, LSTM, and others. Their code is published at https://github.com/szhangtju/The-
compression-of-Transformer.  

6.3.3 Generative DNN Model 

As the previous section shows, an uncompressed deep neural network (DNN) can be 
reconstructed using the corresponding compressed tensor network representation. Using 
tensor decomposition approaches, the DNN model can be simplified to achieve the desired 
trade-off between parameterisation and predictive accuracy. Finally, the compressed tensor 
network is mapped back into the corresponding compressed DNN. This is not limited to 
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computer vision or NLP applications but to any NN or DNN architecture solving any 
particular ML task. Another generative DNN architecture model is the Restricted Boltzmann 
Machines (RBM) which estimates the probability distribution of various datasets. Mapping 
an RBM to the Tensor Networks States (TNS) has been successfully applied of  (Chen et al., 
2018). TNS has been applied in various problems in quantum-many body physics.  The 
physics communities refer to Tensor Chain (TC) decomposition as the Matrix Product State 
(MPS), which is a special case of the Hierarchical Tucker (HT) decomposition and the 
simplest TNS.  MPS is equivalent to the TT format. The authors applied concepts from the 
quantum information theory, which has developed at a faster pace in the past decades, to 
define the necessary and sufficient conditions to transform a TNS into an RBM representing 
quantum states.  For example, they map the RBM weights to terms in tensors to form the 
TNS, and then represent the TNS as MPS. They further use the RBM undirected probabilistic 
graphical model structure and employ the conditional independence property to provide an 
optimal MPS model. They discussed other TNS models, adding more deep layers, and how 
the number of parameters does not increase while the model performance increases. Their 
code is published at https://github.com/yzcj105/rbm2mps. 
 
 
 

For Python examples applying these concepts, many are contributed as open source in the 
public domain. For example, Tensorly Python package authors compressed a FC layer using 
TT format at 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tt-
compression.ipynb.  

They also have a Tensor Regression Layer (TRL) 
https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tensor
_regression_layer.ipynb  

A Tensorial RNN can be found at  https://github.com/Tuyki/TT_RNN  that includes FC, 
Simple RNN, LSTM and GRU in their Tutorials using PyTorch. Many python packages 
implement the TT decomposition, such as scikit_tt (https://github.com/PGelss/scikit_tt/)  

The Fully Connected layer tensorization and the CNN layer tensorization are implemented in 
Python and published at https://github.com/timgaripov/TensorNet-
TF/tree/master/experiments/cifar-10/FC-Tensorizing-Neural-Networks, and 
https://github.com/timgaripov/TensorNet-TF/tree/master/experiments/cifar-10/conv-
Ultimate-Tensorization.  



CHAPTER 6 

20 

6.3.4 Multi-modal Neural Networks & Data Fusion 
Techniques 

Multi-modal problems rely on two or more datasets, each coming from its domain and 
representation requirements. A data fusion step is required to create a unimodal projection 
out of the multi-modal different spaces representation, capturing the multi-way interactions 
between all modalities.  A simple approach is concatenating the vectors or applying an 
element-wise sum or product between the different modalities. This will not capture 
complex interactions between the different modalities. Outer-Product methods are used to 
capture bilinear interactions between all elements of two vectors, such as an outer product 
q⊗v between visual v and textual q embeddings. This approach will generate a massive 
number of parameters to learn. For example, for two modalities with dimensions n1 = n2 = 
2048 and the dimension of the weights matrix linearised is z =3000, the number of 
parameters is 12.5 billion. Multi-modal Compact Bilinear pooling (MCB) uses FFT to further 
compress the outer product (Fukui et al., 2016). For more than two modalities, more 
compression, expressive, and interpretable fusion, the tensor multi-way analysis is an 
intuitive solution to these applications. 
 
The authors in (Ben-younes et al., 2017) address the Visual Question Answering (VQA) task 
by using tensors to fuse visual and textual representations.  They proposed a multi-modal 
tensor-based Tucker decomposition to capture the interactions between images and textual 
modalities with fewer parameters (compression) than other bilinear models. The images’ 
internal representation v is learned using a CNN architecture; the textual representation q is 
learned using GRU sequential architecture. Then a Tucker representation 𝒯 =

 ൣ𝑇௖; 𝑊௤ , 𝑊௩ , 𝑊௢൧  with a core tensor 𝑇௖, text matrix 𝑊௤, image matrix 𝑊௩ and the output 

matrix 𝑊௢. The output vector 𝑦 = ൬ቀ𝑇௖ ×ଵ ൫𝑞்𝑊௤൯ቁ ×ଶ (𝑣்𝑊௩)൰ ×ଷ 𝑊௢ produces an 

answer. They tested the model using the VQA dataset that can be downloaded from 
https://visualqa.org/. They compared the performance with other state-of-the-art models 
to show performance improvements. Their code is published at 
https://github.com/Cadene/vqa.pytorch.  
 
For thre modalities examples, the work in (Li et al., 2020) created a multi-modal sentiment 
analysis (MSA) using the MOSI/CMU-MOSI dataset of a of the form  (A, V , L), where A = {A1, 
. . . , AT }, V = {V1, . . . , VT } and L = {L1, . . . ,LT }, denote the time series of the length T w.r.t. 
the acoustic, visual and language  data, respectively. The dataset is published at 
https://paperswithcode.com/dataset/multimodal-opinionlevel-sentiment-intensity and 
https://github.com/A2Zadeh/CMU-MultimodalSDK. The aim is to learn the composite 
function 𝑦ො = 𝑓(𝜑௔(𝐴), 𝜑௩(𝑉), 𝜑௟(𝐿))where 𝜑௜(𝑋) is the sub-mapping from the raw data to 
the features. This function includes the fusion phase and is learned by an LSTM model using 
a preprocessed features representation that keeps the uni-modal representation and 
concatenated data from the different modalities for each time step, then across k-time 
steps. They proposed Time Product Fusion Network (TPFN) that builds on the temporal 



CHAPTER 6  

21 

tensor fusion network (T2FN). TPFN applies implicit outer product methods across sliding 
time windows to capture the model interaction across modalities in the data fusion phase. 
CP is the method for low-rank decomposition, and regularisation on the low-rank 
representation handles incomplete datasets. Their code is published at 
https://qibinzhao.github.io/publications/ECCV2020_LiChao/TPFN.zip.  

In (Hou et al., 2019), the authors addressed the MSA problem by proposing a High-order 
polynomial tensor pooling (PTP). PTP concatenated features form a Tensor by tensor 
product operation of order P to represent all possible polynomial expansions up to order P. 
As P increases, so does the number of parameters to learn, but the higher polynomial 
interactions between tensors that can be captured. Using CP decomposition, the weights 
tensor is compressed. Then Hierarchical polynomial fusion network (HPFN) is formed 
assuming 2D feature map time series. HPFN recursively learn the local temporal modalities 
pattern by arranging PTP in multiple layers. This borrows many features from CNN, including 
receptive fields, sharing parameters, scanning window, and PTP ‘fusion filters’. Their code is 
published at https://qibinzhao.github.io/publications/NeurIPS_2019_HouMing/HPFN.zip.  

Tensorising Activation functions: 

In the first building block of a neural network design, the choice of activation function is 
typically achieved by a weighted sum of the inputs for vectorial data using the inner product 
between the weight vector and the input vector. In tensorizing the neural network,  the 
tensors can be used to modify input aggregation functions to be suitable for input in tree-
structured data, such that a specific node in the tree, the neuron, recursively computes its 
activation by a weighted sum of the activations of its children, with appropriate weight 
sharing assumptions. Such an aggregation function can be easily tensorized. Working with 
tree data structures usually requires recursion and graph data structures, which will be 
discussed in the following section. 

6.3.5 GNN applications 

This chapter reviewed the advances in Deep Neural Networks (DNN) and how tensor 
decompositions have been applied to them. Graph Neural Networks (GNN) and how graph 
data structures have been applied in DNN and using Tensor decomposition approaches 
using graph and network data structures have been applied in the literature. NN build the 
computational graph as a multipartite graph; however, using graph input data structures to 
train a deep neural network enables various graph theory and network analytics algorithms 
to benefit from the depth and non-linearity of the network.  

The authors of  (Kwon and Chung, 2022) proposed a recursive tensor decomposition 
method that is based on the CP decomposition by choosing orthogonal vectors in the SVD 
step creating a decomposition tree. They experimented on MNIST, CIFAR-10, and ILSVRC 
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2012 datasets, to achieve a 154× reduction in weight parameters with only a 1% accuracy 
drop compared to the original baselines for these datasets. This method is more suitable for 
the neuromorphic systems that will be reviewed in the next chapter. 

The work in (Hamdi and Angryk, 2019) presents tensor decomposition-based node 
embedding algorithms that learn node features from arbitrary types of graphs: undirected, 
directed, and/or weighted, without relying on computationally expensive 
eigendecomposition or requiring tuning of the word embedding-based hyperparameters as 
a result of representing the graph as a node sequence similar to the sentences in a 
document.  

The work in (Jermyn, 2017) presents tensor trees as efficient tensor computer 
representations based on both optimal brute force and greedy algorithm heuristic that 
performs well for higher rank tensors tree decompositions.  

Based on these advances, I find the advances in Graph Neural Networks (GNN) to be 
complementing tensor decomposition and their applications in DNN. GNN is another active 
research topic and almost reaching maturity, as presented in (Liu and Zhou, 2020). The book 
explains how various architectures of DNN (CNN, LSTM, Attention, Residual and 
Hetregenous) are constructed from graph and network analysis algorithms. The GNN builds 
NN from graph structures with node and edge attributes and can use different 
representations such as real-valued vectors and tensors. The introduction to GNN presented 
in (Bacciu et al., 2020) identifies Graph Neural networks as recursive neural units with cycles 
between the node states to capture the mutual dependence, while the term Neural 
Network for Graphs defines the architecture that captures the mutual dependence through 
layers and passing on representations while eliminating recursion. The authors provide a 
tutorial on Deep Graph Networks (DGN) and variants such as Bayesian and Generative. 

The advantages of GNN are closely related to the compressive DNN tensor decomposition 
methods, such as using traditional spectral graph theory to reduce the computational cost 
of shared weights on one side. On the other side, the hierarchical patterns that capture 
features of different sizes can be represented with multi-layer graph structures.  For graph 
transformation, graph-tensors proposed in (Malik et al., 2019) learn embeddings of time-
varying graphs based on a tensor framework. There are also matrix networks proposed in 
(Sun et al., 2018) and graph tensor neural networks (Liu and Zhu, 2021). Spektral is a 
framework of GNN different models that are developed at https://graphneural.network/. 
The Deep Graph Library (DGL) is a framework for different GNN models that scale to large 
graphs using GPUs and distributed architectures. Their codebase and examples are 
published at https://www.dgl.ai/. PyTorch geometric is another GNN framework hosted at 
https://www.pyg.org/. Nvidia offer platforms to parallelise the training of DGLs and PyG 
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GNNs on GPUs using Memgraph, cuGraph,  and graph-as-a-service, as illustrated in 
https://developer.nvidia.com/gnn-frameworks.    

6.4 General Framework 

The field is far from established, and a general framework can be precisely defined at this 
stage. However, general steps to organise the process of building a multi-way analysis 
model or compressing an existing model can be proposed, subject to many possibilities at 
every step, and open for creativity and research outcome proposals. Below is an attempt to 
define sample steps to tensorize ML and DL tasks: 

 Make sure Data is reformatted in Tensor format or can be formatted. 
o Choose already formatted multi-way data, such as 

 http://www.models.life.ku.dk/nwaydata,  
 https://three-mode.leidenuniv.nl/. 
 https://github.com/zhaoxile/reproducible-tensor-completion-state-

of-the-art.  
o Create a script to collect the data in the required format. fMRI, EEG and 

similar data, signal processing data, and multiset data in which at least one 
of the modes consists of different entities in each level are all types of data 
that can be used to create a tensor format. 

o Extract data using a network/graph dataset that is already multi-way. 
 For NLP data, ontologies, RDFs or platforms such as 

https://github.com/knowitall/ollie can be used. 
o Apply a tensorisation step such as Binarisation, Segmentation, decimation, 

folding, reshaping, Hankelization, multi-way Toeplitz Löwner and higher-
order statistics (Debals, 2017).  

 Sometimes the data contains enough information to connect all 
modes of tensorisation; for example, the time mode is naturally 
related to the spatial modes in videos. Other datasets might require 
adding an extra variable to connect the modes, for example, adding 
a time mode of an experiment to tensorise a set of experiments 
each in matrix form, or an extra variable such as illumination/poses 
in tensor faces to connect the Eigenfaces matrices. 

o Make sure the created tensor properties are suitable to the original data 
properties, tensor decomposition readiness and to the required analysis to 
be done. 
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 Standardise all data to centre the mean around zero and rescale to a standard 
deviation of one. Some tensorisation steps will benefit from standardisation on the 
original dataset. 

 Handling large datasets whose tensors can not be created in memory: 
o Choose random samples to create the tensor from, or block sampling. 
o Use incomplete tensors.  
o Apply some dimensionality reduction method on the original dataset as 

explained in chapter two or representation learning method as explained in 
chapter five to transform the data into a compact form better than 
randomization. 

o Attempt identifying the components of the tensor decomposition that you 
can multiply together to resume with a reconstructed tensor from those 
components, such as the method implemented in the Tensorfaces paper. 
This is called implicit tensorization, which combines tensorization with 
tensor decompositions without the explicit construction of a tensor. Tensor 
recognition as well is the process of identifying an implicit tensor and the 
ability to construct it from a given dataset (tensor representing multi-way 
dataset) or a problem definition (tensor representing multi-linear function 
and polynomials). Tensor recognition is a skill that can be gained by 
exposure to various tensorised problems and approaches  (Debals, 2017). 

o Tensor networks can be diagrammatically drawn, and the tensor contraction 
code is generated, as shown in the tool published at 
https://www.tensortrace.com/.  

 Turn into the tensor form using examples from the Python code in 
“tensorisation.ipynb” and “multi-wayExamples.ipynb”. 

 To achieve dimensionality reduction, use a tensor decomposition approach. 
 Choose the machine learning model to apply. Pass only the core decomposed 

tensors for the data and compute the metrics to evaluate. 
 For DNN models, choose where to apply the tensorization steps discussed earlier 

and experiment with the performance evaluation to identify the most suitable for a 
given problem and dataset.  

 Using transparent, simpler code built from scratch for NN and DNN enables 
complete control over all computation and to have code that can survive the many 
waves of the existing DNN platforms' evolution and broken compatibility. For 
example, the following are simpler models: https://github.com/Sentdex/NNfSiX , 
https://github.com/ahmedfgad/NumPyANN, 
https://github.com/ahmedfgad/NumPyCNN, https://github.com/revsic/numpy-rnn,  
https://github.com/pangolulu/rnn-from-scratch, https://github.com/CaptainE/RNN-
LSTM-in-numpy, https://github.com/3outeille/GANumpy, and many more. 
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Otherwise, keep a virtual machine with all dependencies and do not update any 
module independently. 
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