
 

Chapter 7: Parallelisation, Challenges and 
Future Trends 

This chapter discusses parallel and distributed features inherent in tensor modelling, their 
current implementations in C/C++, and how to use them in Python packages. Then the book 
is summarised with a discussion of challenges and future trends in tensor decomposition 
applications. 

7.1 Tensor Computing Parallelisation 

Since machine learning, particularly deep learning, is compute-intensive and memory-
intensive because of the ever-increasing size and dimensionality of the available models, 
datasets, and compute iterations, parallelisation is essential, whether on the software or 
hardware level. What is known as Moore’s law is the observation made by Gordon Moore in 
1965 that the number of transistors in a dense integrated circuit (IC) doubles every 18 
months, increasing processing speed. This observation held true from the 1950s up until 
around the 2010s. Adding more transistors and ever decreasing in size ICs reached their 
physical limits causing heat dissipation that can not be solved using the same 
miniaturisation approach. New approaches continue feeding the increasing need for faster 
processing of the many sectors that have become dependent on it. Various technologies 
competed to provide speed ups, such as multi-CPU, multi-core, 3D CPU transistors, GP-GPU, 
TPUs, ASICs, microcontrollers, SoC, SiP, and distributed processing over clusters of 
computing nodes such as instances in the cloud, supercomputers,  IoT devices connecting 
various sensors, BioChips, and many other passive components. Most machine learning and 
deep learning packages are designed on a massive stack of optimised algorithms that run on 
the detected hardware from CPUs and GPUs. You might need to set the library to use these 
technologies at the higher level of the stack. You can learn the logic, syntax and semantics of 
using these libraries when you are programming your own algorithms. 

The serial programming approach solves the problem logic using a sequence of instructions 
that are executed sequentially, one after another, in one processor. On the other hand, the 
parallel programming approach divides the solution steps into discrete parts that can be 
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solved concurrently on several cores and computing nodes, using any of the Parallel 
Computer Architectures. Speedups are achieved by carefully planning the division of 
independent partitions of the logical sequence or managing the dependencies without 
losing the speedups gained by communication latency.  

Computer architectures with a single CPU or multiple processors/cores have shared memory 
and enable the use of multiple threads. When a network connects an arbitrary number of 
such computing elements, this architecture will have distributed memory and need message 
passing. A computer with a GPU card will require moving the processing between CPU 
device memory and GPU device memory. Python packages to implement parallel programs 
include threading for multiple threads, mpi4py for message passing, and Numba for GPU 
processing. These are mainly C or C++ packages for faster processing with Python wrappers. 
Each of these packages has its online documentation and tutorials from which mastering 
them first-hand from the developers is easy. Numpy is the Python package for working with 
optimised arrays with vectorisation, which is the process of computing in parallel all the 
elements of an array, unlike the built-in sequential arrays of Python.  

Building a parallel algorithm requires taking care of various implementation details such as 
shared memory synchronised access using mutexes or similar structures, distributed 
processing synchronised sending and receiving, and creating barriers and waves of 
computation. The TEDx course of Linear Algebra For Frontiers is managed by the authors of 
a package “Flame for Matrix Partitioning” that implements matrices without manual index 
manipulations to achieve parallelisation (Geijn and Quintana-Ort´, 2008). A detailed Python 
parallel and distributed programming experience can be gained from (Zaccone, 2015). Also, 
the work in the PhD thesis for Tensor Partitioning on a cluster of computing nodes provides 
an example of wavefront processing of N-D arrays applied to the Multiple Sequence 
Alignment problem(Helal et al., 2008), (Helal et al., 2009). In this thesis, ND-arrays are also 
expressed dynamically using a data structure accepting N, shape, and data as parameters 
and creating a linear array in memory. The N-dimensional index is then parameterised to 
access a specific location in the array or update it. This is very important not to fix the array 
dimensionality and shape the way Numpy, MatLab, Mathematica and others do, limiting the 
ability to dynamically create these arrays, particularily in the tensoriation step as shown in 
the tensorisation notebook. 

Google TensorFlow, Facebook  PyTorch , Apache MXNet,  Microsoft CNTK  and the many DL 
Frameworks are built over a stack of optimised algorithms that run in parallel in various 
hardware architectures that they can be compiled to during installation. Table 1 summarises 
the features of some of the available DL frameworks in terms of hardware readiness and the 
type of computational graph built. The Open Neural Network Exchange (ONNX) has been 
proposed to provide interoperability between frameworks. It accepts a model in one of the 
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supported frameworks as input, identifies the common operators, and generates a file for a 
lower-level compiler optimised for a particular hardware platform. 

Table 1: DL Framework comparison 

 Static Graph Dynamic Graph Both 

General Purpose 
HW: CPU/GPU 

TensorFlow/ 
TensorRT / Caffe/ 
CNTK 

PyTorch MXNet 

Embedded: 
ARM/IoT 

TensorFlow Lite PyTorch Mobile Gluon 

High-Level API Keras FastAI Gluon 

 

The numerical recipes optimising solving equations and various Linear Algebra computations 
are standardised in the Basic Linear Algebra Subprograms (BLAS) libraries. DL computations 
have been standardised in similar libraries such as MKL-DNN and cuDNN. Nvidia TensorRT 
accepts models from all DL frameworks and uses optimisation accelerators on supported 
hardware platforms. It supports graph optimisation (e.g., layer fusion) and low-bit 
quantisation with a large collection of highly optimised Nvidia GPU kernels. TensorRT also 
enables Kernel-Auto Tuning by choosing the best data layer and best parallel algorithms for 
the target hardware platform. It also has Dynamic Tensor Memory (Memory optimisation) 
feature that reduces memory footprint and improves memory re-use by allocating memory 
for each Tensor only for the duration of its usage, and a Multi-Stream Execution feature that 
scales to multiple input streams by processing them in parallel using the same model and 
weights. For example, a PyTorch 1.4.0  model is accelerated by quantisation from FP32 to 
FP16 using TensorRT to Cuda 10.1 Titan V, i7-7800X achieved almost double speedup than 
the original model. Research Project: BLAS was introduced in 1969 with vector operations, 
updated in the 70s for matrix-vector operations and in the 80s for matrix-matrix operations. 
Tensor-tensor operations BLAS for the fourth order tensors were implemented in (Liu and 
Wang, 2017), including tensor (Kronecker) product, KhatriRao product, Hadamard product, 
tensor contraction, t-product or L-product. The need for a similar highly optimised Tensor 
Decomposition for a variable (n) order tensors mathematical library that is efficient on 
computational tractability and interoperable between the different DL frameworks and 
hardware is also required. 

Please note that Tensor in TensorFlow, TensorRT and many other DL current frameworks 
are limited to predefined ordered two- or three- or four-dimensional arrays and are still 
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working on the traditional vectorised pair-wise models or spatial matrices for convolutions 
layers. The first dimension is usually the Batch number (learning occurs through epochs of 
applying input batches to the input layer), the second or last dimension is usually a 
timestep/or channel, and the data is in vector form in the remaining dimension for Fully 
connected layers. For 2D convolution, two dimensions are used for the spatial dimensions, 
such as image width and height. The video dataset has three spatial dimensions; the extra 
dimension is for the time or frames. Therefore, the data is in vector form, fixed 2D, or fixed 
3D ordered dimensions, while the framework’s name has Tensor in it, implying that it can 
grow as a multi-way for any multi-way dataset. Graph Neural Networks (GNN) are currently 
well developed to accept data as adjacency matrices of graph data structures. The various 
NN tensorisation projects reviewed in chapter six did not create a framework yet. I will 
mention Tensor Decomposition models to mean the ability to accept input in N-D arrays as 
implemented in Numpy and Tensorly with the ability to define the modes in any order based 
on the problem requirements. Research Project: Tensorised NN Frameworks can be built 
with all Tensorised Layer types implemented, tensorised activation functions, and 
tensorised forward and backwards propagation algorithms such as the SGD with DMRG 
algorithms, AutoDiff (Paszke et al., 2017) and DDSP (differentiable digital signal processing) 
(Engel et al., 2020).  

The chips/processors that were designed for AI are called XPU. These include GPUs, FPGAs, 
and Application Specific Integrated Circuits (ASICs),  such as neural processing units (NPUs). 
Matrix operations specialised/dedicated hardware has been built to optimise DL 
performance, such as Google TPU, Hisilicon NPU, Apple Bonic, tensor cores in NVIDIA 
Volta/Turing Architecture, Intel Nervana neural network processors (NNP), Tensor 
Computing Processor BM1684 , Amazon Inferentia with NeuroCores, Hanguang Alibaba Ali-
NPU, Knupath Hermosa, Baidu XPU, Qualcomm Cloud AI 100, Cambricon MLU270, 
Graphcore GC2, AVX512 vector units and tensor core, and FPGA DL ready components.  

The TPU is 15 to 30 times faster than current GPUs and CPUs. A TPU uses a matrix as a 
primitive instead of a vector or scalar in CPUs and GPUs, which means ND-Arrays still need 
to be matricised. It includes Matrix Multiplier Unit (MXU), Unified Buffer (UB), and 
Activation Unit (AU), which is driven with CISC instructions by the host processor. The MXU 
is power and area optimised and is composed of a systolic array to perform matrix 
multiplications. The TPU architecture has bottlenecks that are identified in (Wang et al., 
2019). Their study proposed a new parameterised deep learning benchmark suite 
(ParaDNN) to evaluate the performance of six DNN models on Google TPU, Nvidia V100 GPU 
and Intel Skylake CPU platforms.   

The neuromorphic systems are inspired by biological brain science, such as IBM’s TrueNorth 
and Intel’s Loihi. TrueNorth employs high connectivity between artificial neurons to simulate 
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the brain tissues. The pulse-time-dependent synaptic plasticity model (STDP) mechanism is 
employed by  Loihi, simulating the brain’s regulation of the synaptic strength by the relative 
time of pre-synaptic and post-synaptic pulses. These systems are still in their infancy and 
more suitable for long-term learning than large-scale modelling. For example, 
(Sharifshazileh et al., 2021) designed a neuromorphic system with a neural recording head-
stage with a spiking neural network (SNN) processing core for processing intracranial 
Electroencephalography-EEG (iEEG) for the detection of High-Frequency Oscillations (HFO) 
from Brain Tissues. These systems have low power and latency compared to CPUs and GPUs 
and read the analogue signal directly from the head-stage. 
 
DL compilers such as TVM (Tensor Virtual Machine), Tensor Comprehension (TC), Glow, 
nGraph, XLA, and FPGA specific DL code generators such as DNN Weaver, AngelEye, ALAMO, 
FP-DNN, SysArrayAccel, fpgaConvNet , DeepBurning, Haddoc2, and AutoCodeGen have been 
proposed that compile a model in a given framework to a given hardware architecture. The 
survey in (Li et al., 2021) provides anatomical design steps for building a DL compiler, such 
as the Front-end dealing with the input framework and building a NN Intermediate 
Representation (IR) that is passed on to the back-end that uses mature compiler toolchains 
targetting specific hardware such as LLVM. The back-end turns the high-level IR into a lower-
level IR and uses third-party toolchain optimisation and code generation, including multiple 
compilation passes, memory allocation, and HW parallelisation, along with other possible 
features. The survey evaluates these compilers by creating 19 sample NN models (ResNet, 
DenseNet, VGG series, and lightweight models: MobileNet and MNASNet series)  on 
Torchvison, and the GluonCV, then used ONNX specific relays such as 
tvm.relay.frontend.from_onnx for TVM, and the other corresponding relays of the other 
compilers. They evaluate the compilers’ features’ presence and the generated output model 
speed of execution on CPUs and GPUs on coarse-grained level (end-to-end) and fine-grained 
level (per-layer) performance metrics. They identified the successful compilation per Model 
type, compiler, and architecture and also identified the lack of compatibility of some models 
with some compilers. They conclude that TVM is among the best performance in several 
experiments. Research Project:  I assume none of these is suitable for tensorised DL 
applications, but an extensive study should experiment with their readiness or what it needs 
to achieve similar compilers for Tensor decomposition and tensorised NN models 

Production servers also enable better use of available CPU, GPU and hardware resources by 
launching multiple instances of one or more ML models as required, using a scheduler and 
static or dynamic batching of inference requests to reduce response latency and increase 
throughput. NVIDIA Triton Inference, IBM Watson Studio, MS Azure Machine Learning, 
Kubeflow and others offer different services to utilise in deploying ML models for inference. 
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Various performance metrics can be collected to help optimise an ML model configuration 
with profiling. 
 
Figure 1 illustrates the technologies below Tensor structures from lower levels, highly 
optimised libraries, to hardware. It also shows the algorithms up to the applications and 
compilers that can benefit from tensor computation methods. At every level, further 
investigations are still an active research area with potential innovation. 
 

 
Figure 1: Tensor and Tensor Network Hourglass architecture described by (Liu et al., 2021), showing the hardware 
at the bottom, the applications on top, and how tensors and tensors networks are in the middle layer central to 
all future developments and calling for standardisation. 

7.2 Challenges and Future Trends 

This section summarises state-of-the-art with discussions of existing challenges and 
expected future trends. As discussed in chapter six, tensorizing NN takes place at the various 
building blocks of building the network. The number of blocks at which the tensorisation 
occurs, the type of tensorisation, and the collective performance evaluation is still an active 
area of research. We have seen examples of the tensorisation at one NN layer, multiple 
layers, or expressing the whole network using Tensor Networks models. There are 
tensorisation approaches at the forward phase of neural models (i.e. computing of the 
neural activation), at the backward phase (i.e. learning), and both. Also, the activation 
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function choice using recursive tree inputs has been attempted. Research Project: The type 
of tensor decomposition used, such as CP, Tucker, HT, TT, or others, needs to be further 
studied to evaluate the enhancement of the trade-off between compression and 
performance and the interpretability of different models and the different applications. 
Preferably, building benchmarks with clear metrics can enhance comparing the different 
future proposals. Multimodal DL models as well will benefit from tensorisation. Currently, 
large-scale trained models are merged on deployment, such as in Nvidia Deepstream 
https://developer.nvidia.com/deepstream-sdk. Merging the representation during training 
will reduce the model size, training time and deployment cost and achieve better 
representation and regularisation due to multi-way structure capturing. Investigating 
through the theory, the empirical results, and the deployment technologies can be pursued. 
 
Chapter six briefly reviewed some work on multi-relational data analysis on single networks, 
on collections of structured tree samples, Graph NN and DGN,  showing that the 
interpretation of the representation achieved better performance of the various tensorised 
models than the untensorized models. Research Projects: Generalising these to handle 
datasets of graph samples with unconstrained topology also needs to be evaluated. For 
example, hypergraphs connect a node to a subset of the graph rather than to other nodes 
only, creating hierarchical models. Systematic evaluation of the expressiveness achieved 
after tensorisation due to the enhanced representation would clarify the performance 
evaluation of the newly proposed models (Errica et al., 2020). Also, time-evolving 
graphs/temporal-spatial learning graphs or online learning rather than batch learning using 
tensorised models on graphs would be an interesting direction to enhance and evaluate. 
Tensorising graphs as well would be an ideal research direction for compression and 
expressiveness and accuracy trade-off evaluations. 
 
As identified in the parallelisation section earlier in this chapter and from the Python code 
online examples mentioned in the previous chapters, it is clear that many software libraries 
in various programming languages, not only Python, implement various tensor methods. 
Merging all efforts to create a framework using similar conventions to scikit-learn and other 
DL models, such as TensorFlow or Keras, with some embedded systems-ready packages will 
promote the wide adoption of these methods and enhance their performance. A current list 
of implementation are as follows: 

 scikit-tensor integrates some consolidated tensor decomposition (Tucker, CP and 
the like) into the scikit-learn universe https://github.com/mnick/scikit-tensor .  

 TensorD provides a Python tensor library built on Tensorflow with basic tensor 
operations and decompositions with support for parallel computation (e.g. GPU). 
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Their code and examples are published at https://github.com/Large-Scale-Tensor-
Decomposition/tensorD (Hao et al., 2018).  

 TensorLy is a Python library implementing a wide range of methods for tensor 
learning, allowing to leverage of different computation back-ends, including NumPy, 
MXNet, PyTorch, TensorFlow, and CuPy. Tensorly implements CP, Tucker and TT 
decompositions. Their documentation is found at 
http://tensorly.org/stable/user_guide/tensor_decomposition.html . They also 
implemented Tensor Regression, and their documentation is at 
http://tensorly.org/stable/user_guide/tensor_regression.html. (Kossaifi et al., 2019) 

 HOTTBOX  is a recent standalone Python toolbox for tensor decompositions, 
statistical analysis, visualisation, feature extraction, regression and non-linear 
classification of multi-dimensional data. Their code is published with examples at 
https://hottbox.github.io/stable/index.html (Kisil et al., 2021). 

 “scikit_tt” (https://github.com/PGelss/scikit_tt/)   
 ttrecipes by (Cichocki et al., 2016, p. 1) and published at 

https://github.com/rballester/ttrecipes.   
 “tednet” implements various neural network layer types compressed using different 

tensor decompositions, such as compressing an RNN layer using TR decomposition 
(TR_RNN). They support ResNet Layers, LSTM Layers, CNN, and Linear Layers, 
among others (Pan et al., 2022),  https://github.com/tnbar/tednet. 

 “tensortools” implements time-shifted CP decomposition (Williams et al., 2018). 
Their code is published at https://github.com/neurostatslab/tensortools.  

 “T3F” is built on top of Tensorflow, providing Tensor Train decomposition for neural 
networks with Riemannian optimisation (Novikov et al., 2020). Their code is 
published at https://t3f.readthedocs.io/.  

 Other essential websites keeping track of tensors decomposition algorithms 
developments include https://www.tensors.net/, 
http://tensornetwork.org/software/, and https://qibinzhao.github.io/.  

 
Research Project: Continue expanding the application domain of tensorisation approaches 
to problems such as graph analysis such as graph clustering, and signal processing for 
telecommunications and biomedical sciences, such as medical imaging and signals of various 
modes such as MRI, EEG, ECG, hyperspectral imaging, chemical shift brain imaging and 
others, scientific computing problems such as excitation-emission spectroscopy, 
chromatography, and many more. 
 
In chapter four, Tensortrace tool hard-codes the graphical user input into the Python code. 
Another possible Master’s or PhD thesis project (based on the level of investigation) is to 
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write the code for dynamically creating these tensor shapes with their indices and networks, 
then the contraction dynamically for datasets. This could be an extension to the gamemaker 
studio application or in Python only with or without graphical interfaces. It could be to load 
a dataset file, identify the tensorisation requirements based on some user input from the 
examples in previous chapters, repeat for all required datasets, build the tensor network, 
and contract it into one tensor. Tensorisation so far has been tailored to particular 
applications in this book. Parametrising the tensorisation requirements from the dataset 
shape and analysis requirements to provide some automation and representation learning is 
an interesting project. Then test the dynamic tensor, indices, networks and contraction to 
some real datasets and to some quantum many-body Physical experiments such as the 
dataset and the benchmark in http://quantum-machine.org/datasets/. 
 
Research Project: A constant review of the physics and math communities’ advances and 
how to benefit from them in developing ML and DL applications is required. Other scientific 
computation communities are active contributors to the advancement of ML and DL 
approaches, such as the chemometrics and psychometric communities and others. All these 
communities produce their own software that is usually specified to a given problem. 
Computer science professionals/researchers are trained in generalising and creating 
frameworks using software engineering approaches that maintain backward compatibility 
while continuously evolving to new or enhanced features or components. A joint effort can 
contribute to the understanding and wide adoption of methods from one research 
community to another. 
 
A pronounced research direction comes from chapter five discussion of representation 
theory in relation to abstract algebra and group theoretic frameworks. Many group theory 
implementations, such as GAP, are not ready for higher-scale calls and wrappers from other 
programming languages to build further machine learning and deep learning models on top 
of them. 
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