

Chapter 7: Parallelisation, Challenges and
Future Trends

This chapter discusses parallel and distributed features inherent in tensor modelling, their
current implementations in C/C++, and how to use them in Python packages. Then the book
is summarised with a discussion of challenges and future trends in tensor decomposition
applications.

7.1 Tensor Computing Parallelisation

Since machine learning, particularly deep learning, is compute-intensive and memory-
intensive because of the ever-increasing size and dimensionality of the available models,
datasets, and compute iterations, parallelisation is essential, whether on the software or
hardware level. What is known as Moore’s law is the observation made by Gordon Moore in
1965 that the number of transistors in a dense integrated circuit (IC) doubles every 18
months, increasing processing speed. This observation held true from the 1950s up until
around the 2010s. Adding more transistors and ever decreasing in size ICs reached their
physical limits causing heat dissipation that can not be solved using the same
miniaturisation approach. New approaches continue feeding the increasing need for faster
processing of the many sectors that have become dependent on it. Various technologies
competed to provide speed ups, such as multi-CPU, multi-core, 3D CPU transistors, GP-GPU,
TPUs, ASICs, microcontrollers, SoC, SiP, and distributed processing over clusters of
computing nodes such as instances in the cloud, supercomputers, IoT devices connecting
various sensors, BioChips, and many other passive components. Most machine learning and
deep learning packages are designed on a massive stack of optimised algorithms that run on
the detected hardware from CPUs and GPUs. You might need to set the library to use these
technologies at the higher level of the stack. You can learn the logic, syntax and semantics of
using these libraries when you are programming your own algorithms.

The serial programming approach solves the problem logic using a sequence of instructions
that are executed sequentially, one after another, in one processor. On the other hand, the
parallel programming approach divides the solution steps into discrete parts that can be

CHAPTER 7

2

solved concurrently on several cores and computing nodes, using any of the Parallel
Computer Architectures. Speedups are achieved by carefully planning the division of
independent partitions of the logical sequence or managing the dependencies without
losing the speedups gained by communication latency.

Computer architectures with a single CPU or multiple processors/cores have shared memory
and enable the use of multiple threads. When a network connects an arbitrary number of
such computing elements, this architecture will have distributed memory and need message
passing. A computer with a GPU card will require moving the processing between CPU
device memory and GPU device memory. Python packages to implement parallel programs
include threading for multiple threads, mpi4py for message passing, and Numba for GPU
processing. These are mainly C or C++ packages for faster processing with Python wrappers.
Each of these packages has its online documentation and tutorials from which mastering
them first-hand from the developers is easy. Numpy is the Python package for working with
optimised arrays with vectorisation, which is the process of computing in parallel all the
elements of an array, unlike the built-in sequential arrays of Python.

Building a parallel algorithm requires taking care of various implementation details such as
shared memory synchronised access using mutexes or similar structures, distributed
processing synchronised sending and receiving, and creating barriers and waves of
computation. The TEDx course of Linear Algebra For Frontiers is managed by the authors of
a package “Flame for Matrix Partitioning” that implements matrices without manual index
manipulations to achieve parallelisation (Geijn and Quintana-Ort´, 2008). A detailed Python
parallel and distributed programming experience can be gained from (Zaccone, 2015). Also,
the work in the PhD thesis for Tensor Partitioning on a cluster of computing nodes provides
an example of wavefront processing of N-D arrays applied to the Multiple Sequence
Alignment problem(Helal et al., 2008), (Helal et al., 2009). In this thesis, ND-arrays are also
expressed dynamically using a data structure accepting N, shape, and data as parameters
and creating a linear array in memory. The N-dimensional index is then parameterised to
access a specific location in the array or update it. This is very important not to fix the array
dimensionality and shape the way Numpy, MatLab, Mathematica and others do, limiting the
ability to dynamically create these arrays, particularily in the tensoriation step as shown in
the tensorisation notebook.

Google TensorFlow, Facebook PyTorch , Apache MXNet, Microsoft CNTK and the many DL
Frameworks are built over a stack of optimised algorithms that run in parallel in various
hardware architectures that they can be compiled to during installation. Table 1 summarises
the features of some of the available DL frameworks in terms of hardware readiness and the
type of computational graph built. The Open Neural Network Exchange (ONNX) has been
proposed to provide interoperability between frameworks. It accepts a model in one of the

CHAPTER 7

3

supported frameworks as input, identifies the common operators, and generates a file for a
lower-level compiler optimised for a particular hardware platform.

Table 1: DL Framework comparison

 Static Graph Dynamic Graph Both

General Purpose
HW: CPU/GPU

TensorFlow/
TensorRT / Caffe/
CNTK

PyTorch MXNet

Embedded:
ARM/IoT

TensorFlow Lite PyTorch Mobile Gluon

High-Level API Keras FastAI Gluon

The numerical recipes optimising solving equations and various Linear Algebra computations
are standardised in the Basic Linear Algebra Subprograms (BLAS) libraries. DL computations
have been standardised in similar libraries such as MKL-DNN and cuDNN. Nvidia TensorRT
accepts models from all DL frameworks and uses optimisation accelerators on supported
hardware platforms. It supports graph optimisation (e.g., layer fusion) and low-bit
quantisation with a large collection of highly optimised Nvidia GPU kernels. TensorRT also
enables Kernel-Auto Tuning by choosing the best data layer and best parallel algorithms for
the target hardware platform. It also has Dynamic Tensor Memory (Memory optimisation)
feature that reduces memory footprint and improves memory re-use by allocating memory
for each Tensor only for the duration of its usage, and a Multi-Stream Execution feature that
scales to multiple input streams by processing them in parallel using the same model and
weights. For example, a PyTorch 1.4.0 model is accelerated by quantisation from FP32 to
FP16 using TensorRT to Cuda 10.1 Titan V, i7-7800X achieved almost double speedup than
the original model. Research Project: BLAS was introduced in 1969 with vector operations,
updated in the 70s for matrix-vector operations and in the 80s for matrix-matrix operations.
Tensor-tensor operations BLAS for the fourth order tensors were implemented in (Liu and
Wang, 2017), including tensor (Kronecker) product, KhatriRao product, Hadamard product,
tensor contraction, t-product or L-product. The need for a similar highly optimised Tensor
Decomposition for a variable (n) order tensors mathematical library that is efficient on
computational tractability and interoperable between the different DL frameworks and
hardware is also required.

Please note that Tensor in TensorFlow, TensorRT and many other DL current frameworks
are limited to predefined ordered two- or three- or four-dimensional arrays and are still

CHAPTER 7

4

working on the traditional vectorised pair-wise models or spatial matrices for convolutions
layers. The first dimension is usually the Batch number (learning occurs through epochs of
applying input batches to the input layer), the second or last dimension is usually a
timestep/or channel, and the data is in vector form in the remaining dimension for Fully
connected layers. For 2D convolution, two dimensions are used for the spatial dimensions,
such as image width and height. The video dataset has three spatial dimensions; the extra
dimension is for the time or frames. Therefore, the data is in vector form, fixed 2D, or fixed
3D ordered dimensions, while the framework’s name has Tensor in it, implying that it can
grow as a multi-way for any multi-way dataset. Graph Neural Networks (GNN) are currently
well developed to accept data as adjacency matrices of graph data structures. The various
NN tensorisation projects reviewed in chapter six did not create a framework yet. I will
mention Tensor Decomposition models to mean the ability to accept input in N-D arrays as
implemented in Numpy and Tensorly with the ability to define the modes in any order based
on the problem requirements. Research Project: Tensorised NN Frameworks can be built
with all Tensorised Layer types implemented, tensorised activation functions, and
tensorised forward and backwards propagation algorithms such as the SGD with DMRG
algorithms, AutoDiff (Paszke et al., 2017) and DDSP (differentiable digital signal processing)
(Engel et al., 2020).

The chips/processors that were designed for AI are called XPU. These include GPUs, FPGAs,
and Application Specific Integrated Circuits (ASICs), such as neural processing units (NPUs).
Matrix operations specialised/dedicated hardware has been built to optimise DL
performance, such as Google TPU, Hisilicon NPU, Apple Bonic, tensor cores in NVIDIA
Volta/Turing Architecture, Intel Nervana neural network processors (NNP), Tensor
Computing Processor BM1684 , Amazon Inferentia with NeuroCores, Hanguang Alibaba Ali-
NPU, Knupath Hermosa, Baidu XPU, Qualcomm Cloud AI 100, Cambricon MLU270,
Graphcore GC2, AVX512 vector units and tensor core, and FPGA DL ready components.

The TPU is 15 to 30 times faster than current GPUs and CPUs. A TPU uses a matrix as a
primitive instead of a vector or scalar in CPUs and GPUs, which means ND-Arrays still need
to be matricised. It includes Matrix Multiplier Unit (MXU), Unified Buffer (UB), and
Activation Unit (AU), which is driven with CISC instructions by the host processor. The MXU
is power and area optimised and is composed of a systolic array to perform matrix
multiplications. The TPU architecture has bottlenecks that are identified in (Wang et al.,
2019). Their study proposed a new parameterised deep learning benchmark suite
(ParaDNN) to evaluate the performance of six DNN models on Google TPU, Nvidia V100 GPU
and Intel Skylake CPU platforms.

The neuromorphic systems are inspired by biological brain science, such as IBM’s TrueNorth
and Intel’s Loihi. TrueNorth employs high connectivity between artificial neurons to simulate

CHAPTER 7

5

the brain tissues. The pulse-time-dependent synaptic plasticity model (STDP) mechanism is
employed by Loihi, simulating the brain’s regulation of the synaptic strength by the relative
time of pre-synaptic and post-synaptic pulses. These systems are still in their infancy and
more suitable for long-term learning than large-scale modelling. For example,
(Sharifshazileh et al., 2021) designed a neuromorphic system with a neural recording head-
stage with a spiking neural network (SNN) processing core for processing intracranial
Electroencephalography-EEG (iEEG) for the detection of High-Frequency Oscillations (HFO)
from Brain Tissues. These systems have low power and latency compared to CPUs and GPUs
and read the analogue signal directly from the head-stage.

DL compilers such as TVM (Tensor Virtual Machine), Tensor Comprehension (TC), Glow,
nGraph, XLA, and FPGA specific DL code generators such as DNN Weaver, AngelEye, ALAMO,
FP-DNN, SysArrayAccel, fpgaConvNet , DeepBurning, Haddoc2, and AutoCodeGen have been
proposed that compile a model in a given framework to a given hardware architecture. The
survey in (Li et al., 2021) provides anatomical design steps for building a DL compiler, such
as the Front-end dealing with the input framework and building a NN Intermediate
Representation (IR) that is passed on to the back-end that uses mature compiler toolchains
targetting specific hardware such as LLVM. The back-end turns the high-level IR into a lower-
level IR and uses third-party toolchain optimisation and code generation, including multiple
compilation passes, memory allocation, and HW parallelisation, along with other possible
features. The survey evaluates these compilers by creating 19 sample NN models (ResNet,
DenseNet, VGG series, and lightweight models: MobileNet and MNASNet series) on
Torchvison, and the GluonCV, then used ONNX specific relays such as
tvm.relay.frontend.from_onnx for TVM, and the other corresponding relays of the other
compilers. They evaluate the compilers’ features’ presence and the generated output model
speed of execution on CPUs and GPUs on coarse-grained level (end-to-end) and fine-grained
level (per-layer) performance metrics. They identified the successful compilation per Model
type, compiler, and architecture and also identified the lack of compatibility of some models
with some compilers. They conclude that TVM is among the best performance in several
experiments. Research Project: I assume none of these is suitable for tensorised DL
applications, but an extensive study should experiment with their readiness or what it needs
to achieve similar compilers for Tensor decomposition and tensorised NN models

Production servers also enable better use of available CPU, GPU and hardware resources by
launching multiple instances of one or more ML models as required, using a scheduler and
static or dynamic batching of inference requests to reduce response latency and increase
throughput. NVIDIA Triton Inference, IBM Watson Studio, MS Azure Machine Learning,
Kubeflow and others offer different services to utilise in deploying ML models for inference.

CHAPTER 7

6

Various performance metrics can be collected to help optimise an ML model configuration
with profiling.

Figure 1 illustrates the technologies below Tensor structures from lower levels, highly
optimised libraries, to hardware. It also shows the algorithms up to the applications and
compilers that can benefit from tensor computation methods. At every level, further
investigations are still an active research area with potential innovation.

Figure 1: Tensor and Tensor Network Hourglass architecture described by (Liu et al., 2021), showing the hardware
at the bottom, the applications on top, and how tensors and tensors networks are in the middle layer central to
all future developments and calling for standardisation.

7.2 Challenges and Future Trends

This section summarises state-of-the-art with discussions of existing challenges and
expected future trends. As discussed in chapter six, tensorizing NN takes place at the various
building blocks of building the network. The number of blocks at which the tensorisation
occurs, the type of tensorisation, and the collective performance evaluation is still an active
area of research. We have seen examples of the tensorisation at one NN layer, multiple
layers, or expressing the whole network using Tensor Networks models. There are
tensorisation approaches at the forward phase of neural models (i.e. computing of the
neural activation), at the backward phase (i.e. learning), and both. Also, the activation

CHAPTER 7

7

function choice using recursive tree inputs has been attempted. Research Project: The type
of tensor decomposition used, such as CP, Tucker, HT, TT, or others, needs to be further
studied to evaluate the enhancement of the trade-off between compression and
performance and the interpretability of different models and the different applications.
Preferably, building benchmarks with clear metrics can enhance comparing the different
future proposals. Multimodal DL models as well will benefit from tensorisation. Currently,
large-scale trained models are merged on deployment, such as in Nvidia Deepstream
https://developer.nvidia.com/deepstream-sdk. Merging the representation during training
will reduce the model size, training time and deployment cost and achieve better
representation and regularisation due to multi-way structure capturing. Investigating
through the theory, the empirical results, and the deployment technologies can be pursued.

Chapter six briefly reviewed some work on multi-relational data analysis on single networks,
on collections of structured tree samples, Graph NN and DGN, showing that the
interpretation of the representation achieved better performance of the various tensorised
models than the untensorized models. Research Projects: Generalising these to handle
datasets of graph samples with unconstrained topology also needs to be evaluated. For
example, hypergraphs connect a node to a subset of the graph rather than to other nodes
only, creating hierarchical models. Systematic evaluation of the expressiveness achieved
after tensorisation due to the enhanced representation would clarify the performance
evaluation of the newly proposed models (Errica et al., 2020). Also, time-evolving
graphs/temporal-spatial learning graphs or online learning rather than batch learning using
tensorised models on graphs would be an interesting direction to enhance and evaluate.
Tensorising graphs as well would be an ideal research direction for compression and
expressiveness and accuracy trade-off evaluations.

As identified in the parallelisation section earlier in this chapter and from the Python code
online examples mentioned in the previous chapters, it is clear that many software libraries
in various programming languages, not only Python, implement various tensor methods.
Merging all efforts to create a framework using similar conventions to scikit-learn and other
DL models, such as TensorFlow or Keras, with some embedded systems-ready packages will
promote the wide adoption of these methods and enhance their performance. A current list
of implementation are as follows:

 scikit-tensor integrates some consolidated tensor decomposition (Tucker, CP and
the like) into the scikit-learn universe https://github.com/mnick/scikit-tensor .

 TensorD provides a Python tensor library built on Tensorflow with basic tensor
operations and decompositions with support for parallel computation (e.g. GPU).

CHAPTER 7

8

Their code and examples are published at https://github.com/Large-Scale-Tensor-
Decomposition/tensorD (Hao et al., 2018).

 TensorLy is a Python library implementing a wide range of methods for tensor
learning, allowing to leverage of different computation back-ends, including NumPy,
MXNet, PyTorch, TensorFlow, and CuPy. Tensorly implements CP, Tucker and TT
decompositions. Their documentation is found at
http://tensorly.org/stable/user_guide/tensor_decomposition.html . They also
implemented Tensor Regression, and their documentation is at
http://tensorly.org/stable/user_guide/tensor_regression.html. (Kossaifi et al., 2019)

 HOTTBOX is a recent standalone Python toolbox for tensor decompositions,
statistical analysis, visualisation, feature extraction, regression and non-linear
classification of multi-dimensional data. Their code is published with examples at
https://hottbox.github.io/stable/index.html (Kisil et al., 2021).

 “scikit_tt” (https://github.com/PGelss/scikit_tt/)
 ttrecipes by (Cichocki et al., 2016, p. 1) and published at

https://github.com/rballester/ttrecipes.
 “tednet” implements various neural network layer types compressed using different

tensor decompositions, such as compressing an RNN layer using TR decomposition
(TR_RNN). They support ResNet Layers, LSTM Layers, CNN, and Linear Layers,
among others (Pan et al., 2022), https://github.com/tnbar/tednet.

 “tensortools” implements time-shifted CP decomposition (Williams et al., 2018).
Their code is published at https://github.com/neurostatslab/tensortools.

 “T3F” is built on top of Tensorflow, providing Tensor Train decomposition for neural
networks with Riemannian optimisation (Novikov et al., 2020). Their code is
published at https://t3f.readthedocs.io/.

 Other essential websites keeping track of tensors decomposition algorithms
developments include https://www.tensors.net/,
http://tensornetwork.org/software/, and https://qibinzhao.github.io/.

Research Project: Continue expanding the application domain of tensorisation approaches
to problems such as graph analysis such as graph clustering, and signal processing for
telecommunications and biomedical sciences, such as medical imaging and signals of various
modes such as MRI, EEG, ECG, hyperspectral imaging, chemical shift brain imaging and
others, scientific computing problems such as excitation-emission spectroscopy,
chromatography, and many more.

In chapter four, Tensortrace tool hard-codes the graphical user input into the Python code.
Another possible Master’s or PhD thesis project (based on the level of investigation) is to

CHAPTER 7

9

write the code for dynamically creating these tensor shapes with their indices and networks,
then the contraction dynamically for datasets. This could be an extension to the gamemaker
studio application or in Python only with or without graphical interfaces. It could be to load
a dataset file, identify the tensorisation requirements based on some user input from the
examples in previous chapters, repeat for all required datasets, build the tensor network,
and contract it into one tensor. Tensorisation so far has been tailored to particular
applications in this book. Parametrising the tensorisation requirements from the dataset
shape and analysis requirements to provide some automation and representation learning is
an interesting project. Then test the dynamic tensor, indices, networks and contraction to
some real datasets and to some quantum many-body Physical experiments such as the
dataset and the benchmark in http://quantum-machine.org/datasets/.

Research Project: A constant review of the physics and math communities’ advances and
how to benefit from them in developing ML and DL applications is required. Other scientific
computation communities are active contributors to the advancement of ML and DL
approaches, such as the chemometrics and psychometric communities and others. All these
communities produce their own software that is usually specified to a given problem.
Computer science professionals/researchers are trained in generalising and creating
frameworks using software engineering approaches that maintain backward compatibility
while continuously evolving to new or enhanced features or components. A joint effort can
contribute to the understanding and wide adoption of methods from one research
community to another.

A pronounced research direction comes from chapter five discussion of representation
theory in relation to abstract algebra and group theoretic frameworks. Many group theory
implementations, such as GAP, are not ready for higher-scale calls and wrappers from other
programming languages to build further machine learning and deep learning models on top
of them.

References

Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.-H., Zhao, Q., Mandic, D., 2016. Low-Rank
Tensor Networks for Dimensionality Reduction and Large-Scale Optimisation
Problems: Perspectives and Challenges PART 1. FNT in Machine Learning 9, 249–
429. https://doi.org/10.1561/2200000059

Engel, J., Hantrakul, L., Gu, C., Roberts, A., 2020. DDSP: Differentiable Digital Signal
Processing. Presented at the International Conference on Learning Representations,
arXiv.

CHAPTER 7

10

Errica, F., Bacciu, D., Micheli, A., 2020. Theoretically Expressive and Edge-aware Graph
Learning.

Geijn, R.A. van de, Quintana-Ort´, E.S., 2008. The Science of Programming Matrix
Computations. www.lulu.com.

Hao, L., Liang, S., Ye, J., Xu, Z., 2018. TensorD: A tensor decomposition library in TensorFlow.
Neurocomputing 318, 196–200. https://doi.org/10.1016/j.neucom.2018.08.055

Helal, M., El-Gindy, H., Mullin, L., Gaeta, B., 2008. Parallelising Optimal Multiple Sequence
Alignment by Dynamic Programming. IEEE, pp. 669–674.
https://doi.org/10.1109/ISPA.2008.93

Helal, M., Mullin, L., Potter, J., Sintchenko, V., 2009. Search Space Reduction Technique for
Distributed Multiple Sequence Alignment. IEEE, pp. 219–226.
https://doi.org/10.1109/NPC.2009.43

Kisil, I., Calvi, G.G., Dees, BS, Mandic, DP, 2021. HOTTBOX: Higher Order Tensor ToolBOX.
Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M., 2019. TensorLy: Tensor Learning in

Python. Journal of Machine Learning Research 20, 1–6.
Li, M., Liu, Y., Liu, X., Sun, Q., You, X., Yang, H., Luan, Z., Gan, L., Yang, G., Qian, D., 2021. The

Deep Learning Compiler: A Comprehensive Survey. IEEE Trans. Parallel Distrib. Syst.
32, 708–727. https://doi.org/10.1109/TPDS.2020.3030548

Liu, X.-Y., Wang, X., 2017. Fourth-order Tensors with Multi-dimensional Discrete Transforms.
Liu, X.-Y., Zhao, Q., Walid, A., 2021. Tensor and Tensor Networks for Machine Learning: An

Hourglass Architecture. Presented at the International Workshop on Tensor
Network Representations in Machine Learning, Japan, p. 7.

Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I., 2020. Tensor Train
Decomposition on TensorFlow (T3F). Journal of Machine Learning Research 21, 1–7.

Pan, Y., Wang, M., Xu, Z., 2022. TedNet: A Pytorch Toolkit for Tensor Decomposition
Networks. Neurocomputing 469, 234–238.
https://doi.org/10.1016/j.neucom.2021.10.064

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A., 2017. Automatic differentiation in PyTorch. Presented at the
31st Conference on Neural Information Processing Systems, CA, USA, p. 4.

Sharifshazileh, M., Burelo, K., Sarnthein, J., Indiveri, G., 2021. An electronic neuromorphic
system for real-time detection of high frequency oscillations (HFO) in intracranial
EEG. Nat Commun 12, 3095. https://doi.org/10.1038/s41467-021-23342-2

Williams, A.H., Kim, T.H., Wang, F., Vyas, S., Ryu, S.I., Shenoy, K.V., Schnitzer, M., Kolda, T.G.,
Ganguli, S., 2018. Unsupervised Discovery of Demixed, Low-Dimensional Neural
Dynamics across Multiple Timescales through Tensor Component Analysis. Neuron
98, 1099-1115.e8. https://doi.org/10.1016/j.neuron.2018.05.015

Zaccone, G., 2015. Python parallel programming cookbook: master efficient parallel
programming to build powerful applications using Python, 1. publ. ed, Quick
answers to common problems. Packt Publ, Birmingham Mumbai.

